Вторая закономерность – минимизация длины связей. Это приводит к тому, что нейроны соединяются главным образом с соседними нейронами. Короткие связи требуют меньше энергии, объема и времени на передачу сигнала и обеспечивают эффективную коммуникацию между локализованными в определенных зонах нейронами. Следовательно, при увеличении мозга происходит реорганизация путей передачи сигналов и меняется структурная архитектура мозга. В итоге архитектура сложившейся структуры такова, что образуется кластер, или «сообщество», локализованных нейронов с хорошо развитыми соединениями.
Организация такого типа позволяет этим самостоятельным кластерам независимо выполнять определенные функции – и вот уже рождается модуль! Как правило, в одном модуле устанавливаются внутренние связи между нейронами, но некоторые, немногие, нейроны способны образовывать короткие связи с нейронами близлежащих модулей, и в итоге формируется нейронная цепь. Нейронная цепь возникает, когда один модуль получает информацию, обрабатывает ее и передает в другой модуль для дальнейшей обработки. Таким образом, пути передачи информации от одного модуля к другому, пусть и немногочисленные, позволяют соседним модулям объединяться в кластеры для более многоступенчатой ее обработки. В следующей главе мы узнаем об этом больше, когда будем говорить о многоуровневой архитектуре.
Иногда модули образуют иерархическую систему – они состоят из субмодулей, которые и сами в свою очередь складываются из субсубмодулей[16]. Тем не менее при множестве независимо функционирующих модулей возникает нужда в эффективной коммуникации между ними и координации их работы. Получаем третье условие связанности – не все связи должны быть минимизированы, кое-какие длинные связи, которые сокращают путь между удаленными узлами, сохраняются[9].
Общая архитектура, выстроенная по таким правилам соединения, называется архитектурой «малого мира». Для подобного типа архитектуры характерна высокая степень модульности, однако передача информации между любыми двумя модулями всегда происходит в несколько стадий. Архитектура «малого мира» характерна для многих многокомпонентных систем, например для энергосистемы западных штатов США и социальных сетей. Кластерная организация мозга – система функционально взаимосвязанных областей – подтверждена многими исследованиями[17].
Рассмотрев эту конфигурацию, мы увидим, что преимущества модульного мозга перед мозгом, функционирующим целиком, обоснованы массой причин. Начать с того, что модульный мозг существенно снижает расход энергии. Поскольку он разделен на отдельные узлы, для выполнения конкретной задачи необходимо активировать лишь некоторые участки в составе данного модуля. Если бы вы по каждому поводу задействовали весь мозг целиком, вам пришлось бы платить по счету за электричество для всей черепной коробки. Это можно сравнить с летом в Фениксе. Гораздо дешевле включать ночью кондиционеры не во всем доме, а только в спальне. Но хотя модульность и позволяет беречь энергию, так ли уж велика экономия, если учесть, что на питание мозга уходит пятая часть вашего рациона?
Оказывается, несмотря на всю свою энергоемкость, мозг действительно работает рационально в плане потребления энергии. Нейроны передают электрические импульсы по «проводам» мозга – аксонам и дендритам. Хотя нейронная «проводка» заметно отличается от электросхем современных приборов, базовая идея та же – информацию от одного узла к другому несет электрический ток, и на это нужна энергия. Чем длиннее путь, тем больше потребляется энергии, и чем толще аксон, тем выше его сопротивление и, следовательно, больше энергии уходит на его преодоление. Когда в работу включаются локальные модули, мозг экономит энергию при передаче информации между ними за счет использования более тонких «проводов» на коротких расстояниях с меньшим временем проведения сигнала. Кроме того, с учетом динамики нервных систем, доля проводящих путей в мозге – 60 процентов (отношение суммарного объема аксонов к объему серого вещества) – согласуется с той, что и предполагалась при минимальных длине путей и связанном с ней замедлении проводимости. В проводящих системах многих мозговых структур почти выдерживается этот оптимальный параметр[18]. В противном случае, если бы мозг функционировал как унитарный орган, в каждом его отделе содержалось бы примерно равное количество коротких и длинных связей, а более длинная связь подразумевает больше «проводов», то есть больше «затрат». Модульный мозг сокращает затраты, поддерживая для путей передачи сигналов относительно низкое соотношение 3:5 (те самые отведенные им 60 %) и таким образом ограничивая объем передачи электрических сигналов по длинным связям. По-видимому, благодаря модульному режиму работы мозгу удается в целом максимально повышать эффективность расходования энергии.