Читаем Справочник по длинным нардам. Теория и практика игры полностью

-Правила,по которым играютв разной местности (на разных сайтах), реализованыпо-разному.

Выигрыш в партии, когда игрок выбросил свои шашки раньше, чем соперник, дает 1 очко. Такой выигрыш называется «ойн».

Но, если игрок выбросил все свои шашки, а соперник - ни одной, такой выигрыш называется «марс»и дает 2 очка.

Игра ведется по очкам до достижения одним из игроков определенной суммы. Первым набравший эту сумму игрок выигрывает игру. Такая игра называется «тас». Тас играют «до n», т.е. до n побед, например «до 3» или «до 5» и т.д. Число n определяется Регламентом Турнира, Конвенциями матча (игры) или просто договоренностью игроков до игры. В т.ч. можно играть «до 1», когда первый же ойн дает выигрыш в игре.

В терминах «игра» и «матч» легко запутаться. Поэтому определяйтесь (или изучайте, если они уже заданы) с условиями игры (конвенциями) заранее.

Подробнее можно изучить тонкости и спорные положения Правил можно на авторском сайте .


ВЕРОЯТНОСТИ НЕКОТОРЫХ НАРДОВЫХ СОБЫТИЙ.


Перейти к таблицам Вернуться в начало.


ВСТУПЛЕНИЕ

На нардовых сайтах часто спорят о вероятностях различных событий на нардовой доске. И самый первый тезис, с которым сталкиваешься и часто слышишь, звучит примерно так:

Последовательности 1234215 и 55554666 равновероятны и между ними нет никакой разницы.Все последовательности уникальны и у всех одинаковая вероятность выпадения.

Это утверждение верно.

Но неправильное е го (утверждения) пониманиеведет к большой путанице и многочисленным заблуждениям.

Приведу один ПРИМЕР.

Рассматривается вопрос: если 5 бросков подряд не выпадала четверка ни на одном заре, какова вероятность увидеть, хоть одну четверку в шестом броске?

Первый вариантответа дают сторонники «уникальности всех последовательностей»:

Зары не имеют памяти,и не имеет значение, что выпадало до того.Вероятность увидетьчетверкуна одном из зар равна 11 из 36, 11/36 =30,56%. Такая же вероятность будет, если до этогочетверкане выпадалахоть15 раз подряд!

Отметим, что на вопрос: какова вероятность увидеть хоть одну четверку в одном броске, ответ 11/36 совершенно верен. Но вопрос был про 6 бросков подряд, из которых в первых пяти четверки не было. А потому на заданныйвопрос ответ 30,56% - неверен.

Второй вариантответа звучит иначе:

Вероятность бросить одну четверку в одном броске зар действительно равна 11/36. Вероятность НЕ бросить ее равна 36/36 - 11/36 = 25/36. В последовательности из 6 бросков вероятность НЕ выбросить ни одной четверки, равна: (25/36)6 = 11,22%

Как видите, разница в 3 раза. А причина такого расхождения в том, что расчет вероятностей – очень деликатный и непростой вопрос. Он требует хорошего знания математики и очень корректной постановки вопроса.

«Нардовых» событий в длинных нардах может быть много, но мы рассмотрим только два случая:

- вероятность броска (бросков) зар;

- вероятность какого-то условия на броске (бросках) зар.

Короткие нарды мы не рассматриваем. Там есть еще дополнительная специфика вероятностей разных событий, связанная с боем шашек, выходом с бара и прочее.

Итак. В чем же специфика «нардовых» событий и почему позиция «уникальных последовательностей» приводит применительно к нардам к множеству ошибок?


СПЕЦИФИКА СОБЫТИЙ В ДЛИННЫХ НАРДАХ.

Никаких тайн, ни каких сложностей. На самом деле специфика «нардовых» событий, это всего лишь 2 пункта.

А) Бросок зар – это всегда две цифры от 1 до 6. Т.е. нардовые события это вероятности только парных сочетаний цифр от 1 до 6. Все остальное разнообразие многомерной комбинаторики нас не интересует, и мы будем рассматривать только парные броски зар.

Б) Для игры в длинные нарды, бросок 1:2 и 2:1 – это одно и то же. В отличие от нард, в комбинаторике 12 и 21 - две разные комбинации! Вот это и есть главное и критически важное отличие.

Весь дальнейший материал базируется на этой специфике.


ВЕРОЯТНОСТЬ БРОСКА ЗАР.

Вспомним классическую формулу вероятности события:

Количество благоприятных событий

Вероятность какого-либо условия = ---------------------------------------------------------

Общее число всех возможных событий

Начнем с одного броска зар. Это базовое, фундаментальное событие и знание вероятностей, связанных с одним броском необходимо для правильного восприятия игры длинные нарды.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже