Читаем Статьи и речи полностью

Важной особенностью теории того типа, который был разработан Гейзенбергом и Паули, является то, что принцип неопределённости квантовой механики применяется к электромагнитным полям так же, как он применяется и в других случаях. Это означает, что как произведение px неопределённостей в определении момента частицы и её координат положения должно превосходить некоторую величину порядка постоянной Планка h, так же и здесь существует предел точности, с которой можно измерять электромагнитное поле. Однако мы здесь должны быть несколько более точными, так как получается, что если мы намереваемся измерить электромагнитное поле в математически определённой точке пространства, то произведение EH неопределённостей электрического и магнитного полей становится бесконечно большим. Нельзя измерить их с какой-либо точностью! Безусловно, ни один разумный экспериментатор не станет пытаться измерять непрерывную величину в точке. Лучшее, на что можно надеяться,— это измерить среднее по малой области, а затем, делая все большие и большие приближения, уменьшать размеры этой области. Если поступать так (опуская ради простоты подробности того, как определять среднее или форму области), то для области с линейными размерами L соотношение неопределённости для электромагнитного поля, оказывается, принимает вид

EH

>

ch

L4

.

(9)

Следовательно, мы обнаруживаем, что по мере того, как эта область становится все меньше и меньше, ошибки при совместном рассматривании E и H становятся все больше и больше, подразумевая, что должны наблюдаться существенные флуктуации поля.

Это и не удивительно, потому что квантовая теория рассматривает каждый возможный тип колебаний электромагнитного поля, как осциллятор, а мы знаем, что квантово-механический осциллятор обладает нулевой энергией даже когда он находится в самом низшем состоянии. В нашем случае это означает, что если даже световые кванты или «фотоны» отсутствуют, все же остаются колебания поля. Далее, это применимо к каждому типу колебаний всякой возможной длины волны и всякого направления. Если теперь усреднить по определённой области, то типы колебаний очень коротких волн тоже усредняются; но чем меньше область, по которой проводится усреднение, тем большее число типов вносят свою долю, и поэтому ошибки увеличиваются. Таким образом, электромагнитное поле приобретает большую реальность. Хотя такое явление мы не можем объяснить механически, но оно имеет большую реальность, чем можно вообразить с классической точки зрения, и чем точнее мы будем стараться рассматривать явление, тем большие флуктуации будем в нём открывать.

Но принцип неопределённости (9) для электромагнитного поля относится, как и в механике частицы, к произведению двух величин, т. е. чем более точно измеряется электрическое поле, тем менее точно мы можем знать магнитное поле, и наоборот. Однако, согласно формализму квантовой механики, каждое поле в отдельности может быть измерено сколь угодно точно. Это сложный вопрос и такой, относительно которого сначала были некоторые разногласия. Ландау и я попытались доказать, что39b, хотя это и результат принципа неопределённости, но фактически невозможно на практике при помощи какого бы то ни было прибора измерить одно из полей само по себе сверх определённого предела точности. Испускаемое излучение интерферирует с полем пробных тел, которые должны применяться для наблюдения первоначальных полей.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже