Применявшийся обычно при таких исследованиях метод заключался в принятии некоторой гипотезы и в последующем расчёте того, что должно произойти, если гипотеза справедлива. Если результаты расчётов совпадали с явлениями, то говорили, что гипотеза подтвердилась, во всяком случае до тех пор, пока кто-нибудь не высказывал другой гипотезы, ещё лучше согласующейся с явлениями.
Причиной того, что столь большое число наших физических теорий было построено с помощью метода гипотез, является отсутствие у учёных достаточно общей терминологии для выражения результатов своих выводов в их более ранней стадии.
Они были вынуждены, таким образом, оставить свои идеи в неопределённом и потому бесполезном для науки состоянии или представить их в такой форме, подробности которой можно получить лишь при непозволительном применении фантазии.
Тем временем математики, руководимые инстинктом, заставляющим их накоплять для других продукты деятельности своего мышления, разработали, в наиболее общей форме, динамическую теорию материальной системы.
Из всех теорий строения тела, безусловно, наиболее вероятна та, которая утверждает лишь, что тела являются материальными системами, и предлагает выводить из наблюдаемых явлений лишь те заключения о состояниях и связях материальной системы, которые действительно вытекают из этих явлений.
Когда эти методы физических рассуждений будут соответствующим образом представлены и объяснены несколькими примерами, реже станут жалобы на слабость аргументации учёных, а индуктивный метод не будет больше высмеиваться как чисто гадательный.
Лишь небольшая часть теории строения тел сведена в настоящее время к точной дедукции из известных нам фактов. Чтобы вполне правильно вести научную работу посредством систематических опытов и точных демонстраций, требуется стратегическое искусство, на которое нельзя рассчитывать даже у людей, давших науке ряд оригинальных наблюдений и плодотворных предложений. Заслуга этих пионеров науки ничуть не умаляется тем, что, работая в неизвестной ещё области, они в своём продвижении вперёд зачастую отрывались от системы связей с уже установленной научной базой, являющейся единственной гарантией для непрерывного развития науки.
Изучая строение тел, мы с самого начала вынуждены иметь дело с частицами, которые мы не в состоянии наблюдать. Действительно, каковы бы ни были наши конечные заключения о молекулах и атомах, существуют экспериментальные доказательства того, что тела могут быть разделены на столь малые частицы, что они не поддаются нашему восприятию.
Поэтому если мы будем помнить, что слово «частица» означает небольшую часть тела и не подразумевает гипотезы о конечной делимости тел, мы можем считать, что тело состоит из частиц и можем также утверждать, что в телах или частях тел измеримых размеров количество этих частиц чрезвычайно велико.
Ближайшей задачей является введение динамического метода в изучение материальной системы, состоящей из огромного количества частиц, для чего необходимо составить себе представление об их конфигурации и движении, а также о действующих на эти частицы силах. После этого на основании динамической теории можно сделать заключения о явлениях, доступных нашему наблюдению в видимых частях системы, хотя они и зависят от расположения и движения их невидимых частиц.
Необходимые в настоящем исследовании динамические принципы были развиты рядом основоположников динамики от Галилея и Ньютона до Лагранжа и Лапласа. Однако специальное приспособление этих принципов к молекулярным исследованиям является в значительной мере делом профессора Боннского университета Клаузиуса, новые работы которого, в дополнение к результатам его сложных вычислений, содержат новые динамические идеи; руководствуясь этим, я надеюсь без больших вычислений вывести ряд чрезвычайно важных заключений.
Уравнение Клаузиуса, на которое я хочу обратить сейчас ваше внимание, имеет следующую форму:
pV=
2
3
T
-
2
3
1
2
Rr
.
Здесь p означает давление газа, а V — объём заключающего его сосуда. Для случая газа при постоянной температуре произведение pV остаётся, согласно закону Бойля, почти постоянным для различных объёмов и давлений. Этот член уравнения является произведением двух величин, из которых каждая может быть непосредственно измерена.
Вторая часть уравнения состоит из двух членов. Первый зависит от движения частиц, второй от сил, с которыми они друг на друга действуют.
Величина T есть кинетическая энергия системы, или, другими словами, та часть энергии, которая обусловлена движением частей системы.
Кинетическая энергия частицы равна половине произведения её массы на квадрат её скорости, а кинетическая энергия системы — сумме кинетических энергий её частей.
Во втором члене r есть расстояние между каждыми двумя частицами, а R — их взаимное притяжение (если эта сила есть отталкивание или давление, то R нужно считать отрицательным).