Читаем Статьи и речи полностью

Другое подтверждение теории молекул выводится из опытов Дюлонга и Пти над удельной теплотой газов, откуда они вывели носящий их имя закон, утверждающий, что удельные теплоёмкости равных весов газов обратно пропорциональны их атомным весам или, другими словами, что теплоёмкости химических эквивалентов различных газов равны. Мы видели, что температура определяется кинетической энергией движения каждой молекулы. Молекула обладает также определённым количеством энергии внутреннего движения, вращательного либо колебательного, но гипотеза Клаузиуса, что среднее значение внутренней энергии всегда находится в постоянной для каждого газа пропорции к энергии движения, кажется в высшей степени вероятной и согласной с опытом. Полная кинетическая энергия, следовательно, равна энергии движения, помноженной на некоторый множитель. Таким образом, энергия, сообщённая газу нагреванием его, распределяется в известной пропорции между энергией поступательного движения и энергией внутреннего движения каждой молекулы. При данном повышении температуры энергия движения, скажем миллиона молекул, увеличится на одно и то же количество, каков бы ни был газ. Теплота, израсходованная на повышение температуры, измеряется увеличением всей кинетической энергии. Следовательно, отношение теплоёмкостей равного числа молекул различных газов равно отношению множителей, на которые нужно помножить энергию движения, чтобы получить полную энергию. Так как этот множитель оказывается приблизительно одинаковым для всех газов той же самой атомности, то закон Дюлонга и Пти верен для всех таких газов.

Другой результат этого исследования имеет большое значение по отношению к некоторым теориям11*, допускающим существование эфиров или разреженных сред, состоящих из молекул, гораздо более мелких, нежели молекулы обыкновенных газов. Согласно с нашим выводом, такая среда — не что иное, как газ. Если допустить, что молекулы так малы, что они могут проникать в промежутки между молекулами твёрдых веществ, как, например, стекло, то так называемая пустота была бы наполнена этим разреженным газом при наблюдаемой температуре и при любом давлении, каково бы оно ни было, эфирной среды в пространстве. Следовательно, удельная теплота среды в так называемой пустоте будет равна удельной теплоте того же объёма некоторого другого газа при той же температуре и давлении. Но цель допущения этого молекулярного эфира в этих теориях та, чтобы он действовал на тела своим давлением, и с этой целью допускают, что это давление вообще весьма велико. Следовательно, согласно этим теориям, мы должны прийти к заключению, что удельная теплота так называемого вакуума весьма значительна в сравнении с удельной теплотой количества воздуха, наполняющего то же самое пространство.

Теперь мы уже значительно ближе подошли к полной молекулярной теории газов. Мы знаем среднюю скорость молекул каждого газа в метрах в секунду и знаем относительные массы молекул различных газов. Мы знаем также, что молекулы одного и того же газа все имеют одинаковую массу. Если бы это было не так, то посредством метода диализа, каким пользовался, например, Грэхем, мы могли бы отделить молекулы, обладающие меньшей массой, от молекул с большей массой, так как они проходили бы через пористые вещества с большей скоростью. Таким образом мы могли бы любой газ, скажем водород, разделить на две части, различающиеся плотностями и другими физическими свойствами, различающиеся атомными весами, и вероятно, и другими химическими свойствами. Но так как до сих пор ни одному химику ещё не удалось получить образчик водорода, отличающийся в этом отношении от других образчиков, то мы и заключаем, что все молекулы водорода имеют в значительной степени почти одинаковую массу, а не только, что их средняя масса есть статистическое постоянное, обладающее значительной устойчивостью.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже