Читаем Статистика. Ответы на экзаменационные билеты полностью

где n — число единиц совокупности или число вариантов;

х — значения варьирующегося признака.

Средняя гармоническая простая используется для несгруппированных данных.

Средняя гармоническая взвешенная строится по формуле:

где х — значения варьирующего признака;

m — веса;

n — число единиц совокупности. Среднюю гармоническую взвешенную используют для сгруппированных данных, т. е. когда каждое значение х повторяется различное число раз.

Средняя квадратическая простая строится по формуле:

где n — число единиц совокупности или число вариантов; х — значения варьирующегося признака.

Средняя квадратическая простая используется для несгруппированных данных.

Средняя квадратическая взвешенная строится по формуле:

где m – веса;

х – значения варьирующего признака.

Среднюю квадратическую взвешенную используют для сгруппированных данных.

Данные формулы используются редко, в специальных расчетах.

Средняя геометрическая простая строится по формуле:

где n – число единиц совокупности или число вариантов;

х – значения варьирующегося признака. Средняя геометрическая простая используется для несгруппированных данных.

Средняя геометрическая взвешенная строится по формуле:

где х – значения варьирующего признака;

m – веса;

n – число единиц совокупности или число вариантов. Различные формулы средних величин можно объединить в одной формуле – формуле степенной средней:

где р – порядок средней.

9. Медиана и мода. Асимметрия распределения

Медианой М е называется варианта, которая делит ранжированный вариационный ряд на две равные части, из которых значение одной половины меньше медианы, а значения другой – больше медианы.

Медиана для несгруппированных данных при нечетном числе вариантов ( n = 2k+ 1 ), определяется как M e = x k + 1, а при четном числе вариантов (n = 2k ), медиана определяется по формуле:

Медиана для сгруппированных данных рассчитывается по формуле:

где х 0 – это нижняя граница медианного интервала;

/– величина медианного интервала;

em  / 2 – полусумма всех частот;

S Me – накопленная частота, предшествующая медианному интервалу;

m Ме – частота медианного интервала.

Медиана рассчитывают наряду со средней величиной или вместо нее, когда в ряду данных присутствуют открытые или неравные интервалы. Это не влияет на точность медианы, однако, влияет на точность величины.

Модой М 0 называется варианта, которая имеет наибольшую частоту по сравнению с другими частотами. В дискретно-вариационном ряду мода – это та варианта, которой соответствует наибольшая частота.

В интервальном вариационном ряду с равными интервалами моду определяют по формуле:

где х 0 – это нижняя граница модального интервала;

h – величина модального интервала;

d 1 – разность между частотами модального и предмодального интервалов;

d 2 – разность между частотами модального и послемодального интервалов.

Мода рассчитывается в тех случаях, когда невозможно или нецелесообразно рассчитывать среднюю величину по обычным формулам.

Асимметрией распределения называется несоразмерность, т. е. нарушение соответствия в расположении частей одного целого относительно средней линии или центра. На графике асимметрия распределения определяется как вытянутость одной из ветвей распределения. Асимметрия распределения возникает в связи с различной частотой появления вариант больших или меньших моды (т. к. мода соответствует вершине распределения) под влиянием преобладающего действия определенных факторов. Таким образом, наличие асимметрии говорит о неустойчивости распределения совокупности в связи с преобладающим воздействием какой-либо группы факторов.

Асимметрия распределения легко обнаруживается и измеряется на основе разницы между средней величиной и модой. В умеренно асимметричных распределениях мода и средняя образуют интервал, в пределах которого находится медиана. Если разделить этот интервал на 3, то медиана отстоит от моды на 2/3, а от средней – на 1/3.

Для измерения асимметрии рядов распределения применяется эмпирический коэффициент асимметрии:

где x— – простая средняя;

М о– мода;

G – среднеквадратическое отклонение.

10. Абсолютные показатели вариации

К абсолютным показателям вариации относятся:

1) вариационный размах ( R );

2) среднее абсолютное (линейное) отклонение (в);

3) дисперсия ( G 2 );

4) среднеквадратическое отклонение ( G ).

Вариационный размах R — это разность между

наибольшей и наименьшей вариантами вариационного ряда:

R = хmax хmin

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
История Беларуси. С древнейших времен до 2013 г.
История Беларуси. С древнейших времен до 2013 г.

Представлена история Беларуси с древнейших времен до наших дней. Освещаются проблемы этногенеза (происхождения) белорусов, формирования белорусской народности и нации, становления белорусской государственности, социально-экономического, политического и культурного развития белорусских земель в составе Древнерусского государства, Великого Княжества Литовского, Речи Посполитой, Российской империи. Особое внимание уделяется истории советского периода, советской модели модернизации общества, проблемам развития суверенной Республики Беларусь.Первое издание вышло в 2010 г.Для студентов и преподавателей высших учебных заведений, а также учащихся средних специальных и профессионально-технических учебных заведений, лицеев, гимназий, всех, кто интересуется историей Отечества.

Евгений Константинови Новик , Игорь Леонидович Качалов , Наталия Евгеньевна Новик

Детская образовательная литература / История / Учебники и пособия ВУЗов / Книги Для Детей / Образование и наука