Читаем Стеклянная клетка полностью

В тридцатые годы, работая над докторской диссертацией, британский математик и компьютерный первопроходец Алан Тьюринг пришел к мысли о «машине предсказаний». Это был своего рода компьютер, который, пользуясь набором ясных и понятных правил, обрабатывал хранилище данных посредством некоторых, невыясненных пока, приемов и отвечал на вопросы, которые обычно требуют от человека интуитивного знания. Тьюринг хотел выяснить, насколько можно интуицию заменить изобретательностью. В целях чистоты своего мысленного эксперимента он постулировал, что у способности машины к обработке огромных массивов чисел нет пределов и отсутствует верхняя граница скорости вычислений, а также неограниченно количество данных, которые машина может принять во внимание. «Мы сейчас не говорим о том, какого мастерства это потребует, – писал Тьюринг, – и поэтому будем считать, что и у него тоже нет границ» [44]. Тьюринг, как всегда, оказался провидцем. Он был одним из немногих в то время ученых, понявших скрытую интеллектуальность алгоритмов и предвидевших, что раскрепостить этот интеллект можно будет за счет увеличения скорости вычислений. Компьютеры, как и базы данных, всегда будут иметь определенные ограничения, но уже в таких механизмах, как Watson, мы видим прообраз «машины предсказаний» Тьюринга. То, о чем он только мечтал, современные инженеры делают в железе и пластике. Изобретательность вытеснила интуицию.

Невероятная способность Watson оперировать с базами данных может найти практическое применение в диагностике онкологических и иных заболеваний. Кроме того, IBM прогнозирует использование подобных компьютеров в юриспруденции, финансах и образовании. Испытывают такие системы и разведывательные организации – Центральное разведывательное управление США (Central Intelligence Agency, CIA) и Агентство национальной безопасности США (National Security Agency, NSA). Если автомобиль Google без водителя продемонстрировал способность компьютера воспроизводить наши психомоторные навыки и даже превзойти человеческие возможности ориентировки в реальном мире, то Watson показывает умение компьютера подменить когнитивные навыки человека и превосходит наши способности ориентировки в мире символов и идей.


Однако воспроизведение результатов мышления – это отнюдь не само мышление. Как подчеркивал еще Тьюринг, «всегда найдется место для спонтанных суждений, которые не являются результатом сознательного использования разума» [45]. Разумными нас делает не способность извлекать факты из документов и находить статистические закономерности в потоке данных, а возможность придавать вещам смысл, вплетать знания, полученные из наблюдений и опыта, в богатое понимание мира, каковое мы можем приложить к решению любой задачи. Именно это эластичное качество ума, охватывающее осознанное знание, разум и вдохновение, позволяет человеческому существу мыслить концептуально, метафорически, критически, спекулятивно, остроумно, проявляя чудеса логики и воображения.

Эктор Левек, специалист по информационным технологиям и робототехнике из Университета Торонто (University of Toronto), приводит пример простого вопроса, легко находящего ответ у людей, но над которым компьютер может задуматься надолго.


Большой шар падает на стол и пробивает его, потому что он сделан из пенопласта.

Что сделано из пенопласта – большой шар или стол?


Мы даем правильный ответ без всяких усилий, потому что понимаем, что такое пенопласт, знаем, что случается, когда мы что-то бросаем на стол, как выглядит стол и что подразумевается под словом «большой». Мы мгновенно схватываем контекст ситуации и смысл слов, которыми она описана. Компьютер, лишенный всякого понимания реального мира, вынужден считать язык данного высказывания абсолютно двусмысленным. Он ограничен своими алгоритмами. «Сведение интеллекта к статистическому анализу больших наборов данных может привести нас, – говорит Левек, – к системам, впечатляющим публику своей результативностью, но являющихся, по сути, идиотами, проявляющими незаурядные способности в какой-то узкой сфере». Компьютеры могут великолепно играть в шахматы или в «Свою игру», безошибочно распознавать лица или выполнять другие, четко очерченные ментальные задания, но они совершенно безнадежны вне границ этих заданий [46]. Точность работы компьютеров удивительна, но это всего лишь симптом узости их восприятия.

Перейти на страницу:

Похожие книги

Легкий текст. Как писать тексты, которые интересно читать и приятно слушать
Легкий текст. Как писать тексты, которые интересно читать и приятно слушать

Немало успешных спикеров с трудом пишут тексты, и ничуть не меньше успешных авторов весьма бледно смотрятся на сцене. Все дело в том, что речь устная и речь письменная – это два разных вида речи. И чтобы быть правильно понятыми, нам необходимо умение точно и увлекательно излагать мысли устно и письменно, о чем бы ни шла речь. Письма, сообщения, посты в соцсетях, тексты для публичных выступлений, рассказы о путешествиях или событиях – важно, чтобы тексты было приятно и читать, и слушать.В этой книге Светлана Иконникова, тренер по написанию текстов, рассказывает, как точно и убедительно излагать мысли в деловой переписке, соцсетях и мессенджерах, а Нина Зверева, известная телеведущая, бизнес-тренер, автор бестселлеров, объяснит, как создать идеальный текст для выступления. Как передать интонацию на письме, что такое геометрия и вектор текста, с чего он должен начинаться, для кого пишется, как зацепить внимание слушателя и читателя с первой фразы, интересные истории из практики, упражнения и советы – эта книга для тех, кто хочет, чтобы его читали, смотрели и слушали.

Нина Витальевна Зверева , Светлана Геннадьевна Иконникова

Деловая литература / Отраслевые издания / Финансы и бизнес
Пять пороков команды
Пять пороков команды

Глава одной высокотехнологичной компании подал в отставку, поскольку работа компании при нем разваливалась на глазах. «Менеджеры достигли совершенства в искусстве подставлять друг друга. Команда утратила дух единства и товарищества, его сменила нудная обязаловка. Любая работа затягивалась, качество падало». Через некоторое время в компанию приходит новый руководитель и обстановка еще больше накаляется — Кэтрин полна решимости разобраться с проблемами команды менеджеров, которые почти привели успешную компанию к краху.Какой ценой, и главное, каким образом ей это в итоге удается, и рассказывает Патрик Ленсиони.Почему возникают «пять пороков команды» — взаимное недоверие, нетребовательность, безответственность, боязнь конфликта и безразличие к результатам, как их диагностировать и что с ними делать? В первой части книги эти вопросы решает Кэтрин со своей командой, а во второй автор приводит подробное описание этих «пять пороков команды» и методы их устранения.Почему мы решили издать эту книгу?Потому что она может существенно повысить эффективность работы вашей команды.Потому что в ней сочетаются практическая польза и занимательное чтение — за это мы и любим бизнес-романы.Для кого эта книга?Для всех, кто работает в команде и с командой — от руководителя до рядового сотрудника.

Патрик Ленсиони , Патрик М. Ленсиони

Деловая литература / Корпоративная культура / О бизнесе популярно / Управление, подбор персонала / Финансы и бизнес