Однако вопреки принципу неопределенности и общей теории относительности вселенная не сворачивается. Напротив, к тому времени, когда Хокинг взялся разрабатывать теорию кротовых нор, величина космологической константы уже была установлена – и это подтвердилось в наблюдениях – близко к нулю. Это же подтверждается и скоростью расхождения галактик, и самим фактом нашего существования. “Большая космологическая константа, как положительная, так и отрицательная, сделала бы вселенную непригодной для жизни”, – напоминает Хокинг[243]
. Размер космологической константы – один из примеров “гармонизации”, о которой мы говорили в главе 9. Выходит, Эйнштейн поспешил с признанием своей “ошибки”. Но этого в начале 1990-х никто не знал.Но почему же теория сулит нам огромную космологическую константу, а мы наблюдаем маленькую? Вспомним еще раз пары частиц в излучении Хокинга. В теории супергравитации, о которой Хокинг говорил в своей Лукасовской лекции, пары фермионов (частиц материи) испускают в вакууме отрицательную энергию и уравновешивают положительную энергию бозонов (частиц-вестников). Это может послужить хотя бы частичным объяснением, но не все тут просто. Во-первых, эти частицы взаимодействуют не только с гравитацией. И даже если нас окружает огромное количество плюсов и минусов, которые взаимно нейтрализуют друг друга, трудно поверить, чтобы они в точности уравновесились и дали ноль. Сидни Коулмен, разделявший интерес Хокинга к кротовым норам, признавался: “Ноль – число подозрительное. Представьте себе, что на протяжении десятилетий вы тратите, не считая, миллионы долларов, а когда наконец заглянули в строку прихода, оказалось, что приход с расходом сходится до цента”[244]
. Еще менее вероятно, чтобы точно в ноль вышла космологическая константа.Справятся ли с этим парадоксом кротовые норы? Хокинг предполагал, что ветвящиеся в каждой точке кротовые норы превращают космологическую константу, энергетическую плотность вакуума, в “квантовую переменную”, подобную массе частиц. Размер ее может быть
Кротовые норы и теория всего
Кротовые норы и малышки-вселенные захватили воображение многих ученых. Начались оживленные споры, посыпались альтернативные версии. Это хороший признак. “Наука о младенчестве вселенных сама переживает младенчество, – шутил Хокинг, – но она быстро взрослеет”[245]
. Поможет ли гипотеза о кротовых норах и малышках вселенных построить полную теорию вселенной?Прежде всего, как мы уже убедились, эта теория предлагает новый взгляд на проблему космологической константы, на мучительный вопрос о плотности энергии в вакууме – почему же вселенная не съеживается, хотя вроде бы должна? Верил ли Хокинг в то, что теория кротовых нор поможет преодолеть этот парадокс на стыке общей теории относительности и квантовой механики? “Я бы не стал заходить так далеко, – осторожничал Хокинг. – Фундаментального противоречия здесь нет, но имеются технические проблемы, которые с помощью кротовых нор преодолеть не удалось”[246]
.Во-вторых, теория кротовых нор не разваливается, если проследить ее “до начала”. Если вернуться к Большому взрыву, то, согласно теориям Эйнштейна, там мы столкнемся с сингулярностью, в которой все известные нам законы физики отменяются. Предположение Хокинга об отсутствии граничных условий привело к выводу: в воображаемом времени сингулярности нет. Теория кротовых нор предполагает, что в мнимом времени наша вселенная могла зародиться как крошка-вселенная, отпочковавшаяся от другой вселенной.