Частицы, управляемые волной-лоцманом, в 1952 г. переоткрыл Бом (на этих страницах он мелькнул в самом начале главы 7) – как средство решить проблемы измерения и коллапса на основе происходящего не в абстрактном математическом, а в нашем физическом пространстве. Квантовая механика к этому времени достигла зрелости, было полностью осознано значение принципа неопределенности, и идея добавить
в существующую теорию частицы, обладающие вполне определенными положениями и скоростями – другими словами, движущиеся по траекториям, – должна была выглядеть по меньшей мере необычно. Бом же установил, что квантовая механика с добавленными в нее частицами дает те же самые предсказания, что и стандартная квантовая механика; все ее ответы правильные (как выяснилось позже, былые сомнения де Бройля на этот счет были вызваны неточностями и недостаточной развитостью аргументации). А в отличие от стандартной квантовой механики теория Бома предлагала картину того, что происходит в пространстве. С высоты современности, кстати, правильное название – механика де Бройля – Бома, но чаще она фигурирует под именем бомовской механики, отчасти из-за того, что именно Бом показал ее эквивалентность утвердившейся к тому времени стандартной квантовой механике.Бом, вероятно, рассчитывал на взрывную реакцию квантово-механического сообщества на предложенное им «развитие и внятное объяснение» квантовой механики. Правда, его идеи и сами развивались в непростых условиях. Бома подозревали в симпатиях к коммунизму и арестовали за отказ давать показания Комиссии по расследованию антиамериканской деятельности. Когда он вышел из-под ареста, ему не продлили контракт с Принстонским университетом, из-за чего не состоялось его планировавшееся сотрудничество с Эйнштейном, а вскоре ему пришлось даже уехать из США (для начала в Бразилию), а затем и вовсе отказаться от американского гражданства.
В дебройлевско-бомовской механике, помимо детерминистского уравнения Шрёдингера, движение точечных частиц тоже детерминистское; где же тогда, спрашивается, нашла там приют квантовая случайность, проявляющая себя в измерениях? Вот где. Хотя каждая частица («электрон») находится в определенной точке пространства, неизвестно
, тем не менее, где именно. Ключевой постулат состоит в том, что в пространственных конфигурациях имеется «неустранимый люфт»: положения частиц случайны. А именно, если мы воспроизводим одно и то же состояние системы снова и снова, то эти частицы каждый раз начинают с различных положений. Волновая функция одна и та же, но начальная расстановка частиц – нет. А далее дорогу каждой частице показывает волновая функция, и различия на старте ведут к различиям и в последующие моменты времени.Исходная конфигурация вне нашего контроля, причем различные конфигурации реализуются с некоторыми вероятностями. С какими именно? Здесь никаких сюрпризов: с теми, которые определяются из имеющейся волновой функции по правилу Борна{55}
. Не надо только при этом пугать себя и окружающих появлением измерительного прибора, которым сопровождается применение правила Борна в стандартной квантовой механике: на правило Борна предлагается теперь смотреть просто как на математическое предписание, которое извлекает вероятности из волновой функции. Эти вероятности не имеют отношения к измерению; они просто регулируют неустранимый «люфт» в положениях всех частиц при заданной волновой функции.А далее все складывается в стройную картину. Исходя из вероятностей начальных положений, можно вычислить
вероятности, с которыми электрон позднее окажется в той или иной точке; с этими вероятностями, разумеется, его и обнаружит там измерительный прибор, если или когда мы пожелаем сделать измерение. И тут чудесно срабатывает математика: вероятности эти получаются такими же, как если бы мы применяли правило Борна, взяв для этого волновую функцию в момент измерения. От измерительного прибора теперь не требуется никаких чудес вроде нарушения уравнения Шрёдингера: он просто обнаруживает электрон в той точке, куда тот и прибыл под управлением волновой функции; «разброс» по таким точкам регулируется правилом Борна независимо от наличия или отсутствия прибора.Квантовая случайность получила, таким образом, объяснение как наше незнание
о том, где на самом деле находятся частицы в каждом конкретном опыте. Правило Борна, кроме того, удалось отсоединить от измерительного прибора; теперь оно определяет только люфт в начальных конфигурациях частиц.