Читаем Столетняя история «летающего крыла» полностью

2. Д.Нортроп. Развитие самолетов типа "летающее крыло". Пер. с англ. М.:ВЦП, 1948. С. 2.

3. M.Stephens. Northrop N-1M test program. (Typed unpublished report) // NASM Archives.

4. Д.Нортроп сообщает о 200 полетах на N-1M. Однако, по подсчетам М.Стивенза, эта величина сильно завышена. (E.Wooldridge. Winged wonders. The story of flying wings. Washington, 1988. P. 110—112).

3. Wooldridge. P.143.

6. В 1947 г. в докладе о своих работах по "летающему крылу" Нортроп признал, что во многих случаях технические идеи конструкторов фирмы Нортроп были аналогичны тем решениям, которые применяли братья Хортен (Д.Нортроп. Развитие самолетов типа "летающее крыло". М., 1948). Речь, однако, не идет о каком-то прямом заимствовании конструкторских идей, так как к моменту начала практических работ Нортропа по ХВ-35 и его прототипам в Европе уже шла война, контакты с немецкими специалистами были невозможны и большинство технических особенностей хортеновских "летающих крыльев" стали известны американским инженерам только после войны.

7. Нортроп. С. 4. По проведенным в ЦАГИ расчетам, ХВ-35 имел несколько больший Схо=0,016 (И.К.Ломова. Техническое описание самолета Нортроп ХВ-35 типа "летающее крыло". М., 1948. С. 3). Но и в таком случае это — рекордно малая величина.

8. Т.Coleman. Jack Northrop and the flying wing. The story behind the stealth bomber. New York, 1988. P. 116-117.

9. American piston-engines bombers // Flight. 1948. № 2078. P. 481—484.

10. O.Douglas. Jet flight story told by Douglas // Northrop News. 1947. № 7. P. 1.

11. Air Power History. 1994. Vol. 41. № 4. P. 46—47.


12

Первые реактивные "бесхвостки"

Мысль о применении схемы "бесхвостка" при создании самолета с реактивным (ракетным) двигателем возникла еще на заре авиации.[1] Отсутствие оперения и короткая задняя часть фюзеляжа, характерные для данной схемы, позволяли избежать проблем, связанных с компоновкой реактивного двигателя и воздействием струи горячих газов на горизонтальное оперение.

Вначале для изучения реактивного полета использовали пороховые ракеты. Опыты, проведенные в 1928 г. в Германии М.Валье и А.Липпишем, дали впечатляющие результаты: модель "бесхвостки" размахом 4 м с ракетой, развивающей тягу 175 кгс, в одном из полетов достигла скорости около 500 км/ч.[2]

Следующим этапом стали пилотируемые полеты. В конце 1929 г. немецкий летчик и авиаконструктор Г.Эспенлауб установил две пороховые ракеты на крыле планера обычной схемы. Ему удалось осуществить короткий реактивный полет, но после посадки пилот увидел, что вертикальное оперение сильно обгорело. Поэтому следующий опыт Эспенлауб проводил на бесхвостом планере типа "Шторх" с размахом крыла 12 м. Аппарат весил 220 кг, из них 70 кг приходилось на пороховые ракеты. Испытание состоялось в октябре 1930 г. на аэродроме в Дюссельдорфе. Под действием реактивной тяги ракетоплан взлетел и достиг скорости 90 км/ч.[3]

Из-за недостатков, присущих пороховому двигателю: кратковременности работы, невозможности регулирования силы тяги и выключения — включения в полете, он не нашел применения в качестве авиационной силовой установки. Большие надежды связывали с использованием на самолетах жидкостного ракетного двигателя (ЖРД).

Планер Г.Эспенлауба с ракетным двигателем.


Я уже писал о неудавшейся попытке создания ракетоплана РП-1 на основе бесхвостого планера Черановского БИЧ-8: конструкторам не удалось создать надежно работающий ЖРД. Первый самолет-"бесхвостка" с ЖРД появился только десять лет спустя. Это был знаменитый немецкий ракетный истребитель Me-163.

Работы по самолету начались в январе 1939 г. Тогда по предложению Исследовательского отдела Министерства авиации для А.Липпиша на фирме Мессершмитт в Аугсбурге был создан специальный отдел "L" по разработке ракетного истребителя. На самолете должен был стоять жидкостный ракетный двигатель Вальтер R1-203 с тягой 400 кгс.

В качестве прототипа реактивной машины Липпиш выбрал свою наиболее удачную "бесхвостку" DFS-39. Однако в процессе трансформации этого винтомоторного аппарата в реактивный в его конструкцию внесли столько изменений, что в результате получился новый самолет — DFS-194. Он имел обычное вертикальное оперение с рулем направления, была устранена поперечная V-образность крыла, установлены предкрылки, колесное шасси заменили отделяемой после взлета тележкой и посадочной лыжей. Размах крыла — 10,4 м — почти не изменился, а вот длина самолета возросла с 5,1 до 6,4 м. Стреловидность крыла менялась от 19° у корня до 27° на краях. Как и на других "бесхвостках" Липпиша, продольная балансировка достигалась сочетанием S-образности корневых профилей и отрицательной крутки концов крыла. На каждом крыле имелось две секции отклоняемых поверхностей: внешняя являлась элевоном, внутренняя — балансировочной поверхностью типа переставного стабилизатора.

Перейти на страницу:

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Как проектировать электронные схемы
Как проектировать электронные схемы

Данная книга представляет собой сборник практических рекомендаций по проектированию, изготовлению и наладке аналоговых и цифровых электронных схем различного назначения. Большое внимание уделено особенностям использования разнообразных электронных компонентов, вопросам разработки и изготовления печатных плат и корпусов, методике испытания устройств и поиска неисправностей. Приведено большое количество сравнительно простых цифровых и аналоговых схем. Отдельная глава посвящена решению типовых задач по программированию микропроцессоров и микроконтроллеров, представлены примеры полезных подпрограмм. Книга адресована как начинающим любителям электроники и радиотехники, так и профессионалам.  

Клод Галле

Техника / Радиоэлектроника / Технические науки / Образование и наука
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам. Все это расширяет представление о В.Н. Венедиктове, раскрывает его личность, характер, склонности, интересы, привычки, позволяет глубже понять истоки целеустремленности главного конструктора, мотивы его поступков, помогает находить объяснение успехам в научной и инженерной деятельности. Книга рассчитана на читателей, интересующихся историей танкостроения.

Игорь Николаевич Баранов , И. Н. Баранов

Военное дело / Энциклопедии / Технические науки / Военное дело: прочее