Читаем Страх физики. Сферический конь в вакууме полностью

Красота записи 1,4960∙1013 состоит еще и в том, что множитель 1013 сразу же задает «масштаб» числа, а мантисса 1,4960 указывает на его точность. Чем больше десятичных разрядов содержит мантисса, тем точнее мы знаем физическую величину. Глядя на число, записанное в экспоненциальной форме, вы сразу же понимаете, чем можно пренебречь. Масштаб 1013 см говорит, что физические эффекты, проявляющиеся на масштабах в несколько сантиметров, метров, километров и даже тысяч километров, скорее всего, можно не учитывать. А как я говорил в предыдущей главе, самое главное в физике — это понимать, чем можно, а чем нельзя пренебречь.

До сих пор я игнорировал, возможно, наиболее важный факт, который придает числу 1,4960∙1013 см физический смысл. Это записанное после него сокращение «см». Без этих «см» мы бы не знали, к какой физической величине относится число, а сакраментальное «см» говорит о том, что это расстояние. Данная спецификация называется размерностью физической величины. Размерность связывает абстрактные математические числа с физическим миром реальных явлений. Сантиметры, дюймы, километры, световые года — это все размерности длины, которые могут использоваться для измерения расстояний.

Вероятно, самым удивительным свойством окружающего мира, позволяющим упростить его картину, является то, что в природе существуют только три независимые размерные величины: длина, время и масса[6]. Размерности всех остальных величин могут быть выражены через комбинацию трех основных. Неважно, измеряете ли вы скорость в милях в час, метрах в секунду или стадиях в неделю, — все это лишь различные способы выражения расстояния, деленного на время.

Это свойство имеет замечательные последствия. Из-за того что в природе существуют только три независимые размерные величины, количество комбинаций, которые можно из них сконструировать, ограничено. Это означает, что каждая физическая величина связана с любой другой физической величиной некоторым простым способом, и это существенно ограничивает количество различных математических соотношений, возможных в физике. Не побоюсь утверждать, что не существует более важного инструмента, используемого физиками, чем размерности физических величин. Размерности не только облегчают запоминание уравнений, но и существенно упрощают картину физического мира. Как я покажу позже, анализ размерностей дает важный ориентир для разумной интерпретации той информации, которую мы получаем от наших органов чувств или измерительных приборов. Описывая физические величины, мы оперируем их размерностями.

Когда мы анализировали законы масштабирования сферического коня, мы работали с соотношениями размерностей длины и массы. Например, нам было важно установить, как соотносится изменение объема коня с изменением его линейных размеров. Анализируя размерности, можно пойти дальше, чтобы понять, как оценить объем предмета произвольной формы. Как я уже говорил, неважно, какими единицами мы пользуемся для измерения объема: кубическими дюймами, кубическими сантиметрами или кубическими футами, важно лишь, что все эти единицы кубические. Единицы, в которых измеряется объем, имеют размерность кубической длины, то есть [длина] х [длина] х [длина]. Таким образом, объем любого объекта может быть оценен путем выбора некоторой характеризующей этот объект длины d с последующим возведением ее в куб: d3. Обычно этого достаточно, чтобы оценить порядок величины объема. Например, объем сферы задается выражением V = π/6∙d3 ≈ ½∙d3, где d — ее диаметр.

А вот пример простейшего анализа размерностей. Предположим, что вы забыли, что следует сделать, чтобы найти пройденное телом расстояние: умножить скорость на время или разделить. Посмотрев на размерности входящих в формулу величин, вы мгновенно получите правильный ответ. Размерность скорости — [метр]/[секунда], размерность длины — [метр]. Для того чтобы получить расстояние, то есть [метр], необходимо [метр]/[секунда] умножить на [секунда], а именно скорость умножить на время. Поколение за поколением студентов безуспешно зубрит сложные формулы, вместо того чтобы просто составить входящие в них физические величины так, чтобы размерность справа от знака равенства была такой же, как и размерность слева.

Следует обратить особое внимание на то, что анализ размерности никоим образом не гарантирует, что вы получите правильный ответ, но он гарантированно подскажет, когда вы ошибаетесь. Он как слега при переходе через болото: не факт, что, пользуясь ею, вы не заблудитесь, но зато наверняка не утонете.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука