английского физика президента Лондонского королевского общества (1890–1895 гг.), почетного члена Петербургской Академии наук Уильяма Томсона (1824–1907), получившего за научные заслуги титул лорда Кельвина, давшего, как уже сказано, одну из формулировок второго начала, предложившего абсолютную шкалу температур, носящую его имя (шкала Кельвина, градусы К); английского физика, создателя классической электродинамики (об этой, вероятно главной, стороне его научной деятельности речь еще будет идти ниже), одного из основателей статистической физики, Джеймса Клерка Максвелла (1831–1879), установившего статистическое распределение частиц газового континуума по энергиям (но скоростям) (рис. 36); американского физика-теоретика, одного из создателей термодинамики и статистической механики, Джозайи Уилларда Гиббса (1839–1903), разработавшего теорию термодинамических потенциалов, установившего общее условие равновесия гетерогенных систем, именуемого правилом фаз Гиббса, определившего фундаментальный закон статистической физики — каноническое распределение вероятностей различных состояний макроскопической системы; австрийского физика, одного из основателей статистической физики и физической кинетики, Людвига Больцмана (1844–1906), давшего уравнение, носящее его имя, согласно которому между энтропией S и термодинамической вероятностью W состояния вещества существует зависимость
S = k lnW
(где k — постоянная Больцмана, а термодинамическая вероятность состояния вещества W — сумма всех возможных микросостояний, реализующих данное макросостояние; значение W всегда очень велико, отнюдь не правильная дробь), указывающая на то, что природные самопроизвольные процессы направлены в сторону возрастающих термодинамических вероятностей, т. е. в сторону максимальных значений энтропии; немецкого физикохимика, одного из основоположников современной физической химии, иностранного почетного члена Академии наук СССР, Вальтера Нернста (1864–1941), сформулировавшего третье начало термодинамики, о чем говорилось выше, выполнившего ряд выдающихся работ по теории растворов, электрохимии, кинетике и катализу, отмеченных Нобелевской премией (1920 г.).
К перечисленным именам знаменитых ученых, сделавших огромный вклад в создание термодинамики и статистической физики, можно было бы добавить немало других.
Огромные успехи механики, разработка на ее основе теории тепловых явлений привели к тому, что в конце XIX в. ученые естественных наук в своем большинстве склонялись к точке зрения, что физическая картина мира в основном создана. Известный английский физик Уильям Томсон считал, что человеку известно, как устроен мир и должны уточняться лишь детали. Правда, Томсон указывал некоторые явления, которые не укладывались в тогдашнюю картину мира: постоянство скорости света, не зависящей от скорости его источника, и «ультрафиолетовая катастрофа»[299]
. Он назвал их тучками на общем светлом горизонте.В истории науки, вероятно, не так часты случаи, когда столь квалифицированный и информированный ученый оказался бы так далек от истины в прогнозе основ развития науки. Дело в том, что первая «тучка» превратилась в теорию относительности, а вторая — в квантовую теорию. Но тогда точку зрения Томсона разделяли многие.
Но в науке не существует «вечных» теорий. Это можно прекрасно видеть на примере «универсальной» механики. Рано или поздно производится такой эксперимент, который заставляет отказаться от старой теории или изменить ее существенным образом. Таким было, например, наблюдение Румфорда за сверлением пушки для теории теплорода. За несколько десятилетий XX в. физические воззрения изменились коренным образом. Вряд ли теперь можно найти хотя бы одного физика, который думал бы, что все проблемы физики можно решить с помощью уравнений механики. Да и сама мысль о том, что создана теория на все времена, показалась бы ужасной, догматической, нереальной. Это была бы уже религия, а не наука.
Однако расскажем обо всем по порядку. Уже введение представления о двух новых электрических и двух новых магнитных жидкостях (положительных и отрицательных), о чем говорилось раньше, не внушает оптимизма.
Введение понятия жидкостей отвечает механическому подходу решать физические вопросы с помощью субстанций и действующих между ними простых сил. Но возникает сомнение (пока только сомнение): не много ли таких субстанций, сколько их потребуется еще и как велика будет специфика некоторых из них?[300]