Серийное производство ЭВМ началось практически одновременно в СССР и США: прототипы первых отечественных машин — БЭСМ-1, «Стрела», М-2 — были созданы в 1952–1953 гг.; в США первые серийные машины появились в 1951 г. — IВМ-701 и Univac.
Парк ЭВМ увеличивался очень высокими темпами. Если в 1952–1953 гг. число электронных машин исчислялось десятками, то в 1965 г. во всем мире использовалось уже около 40 тыс. ЭВМ, в 1970 г. — свыше 100 тыс.
Говоря об областях применения первых цифровых ЭВМ, следует отметить, что наряду с научными расчетами достаточно четко обозначилась другая весьма обширная область применения ЭВМ — экономические расчеты. Появились ЭВМ, специально сконструированные для этих целей. В основном это были машины последовательного действия: последовательно выполняющие операции над десятичными числами, представленными в двоичной форме, т. е. использовали так называемую десятичную двоично-кодированную систему счисления. Особенностью этих машин является также то, что они обладают большими, по сравнению с ЭВМ для научных расчетов возможностями обработки буквенной информации. Машины этого типа получили широкое распространение.
В своем развитии от первых электронных вычислительных машин с программным управлением до современных ЭВМ вычислительная техника прошла несколько этапов. С каждым таким этапом обычно связывают понятие «поколения» ЭВМ.
К первому поколению ЭВМ (приблизительно 1950–1958 гг.) относятся ламповые, т. е. ЭВМ, построенные на электронных лампах с использованием дискретных радиодеталей и методов навесного монтажа. Почти все элементы, применяемые в этих ЭВМ, заимствованы из радиотехнического оборудования.
Первые запоминающие устройства строились на основе электронных ламп, электронно-лучевых трубок или магнитных барабанов и лент.
Дискретные электронные элементы на лампах были громоздкими, малонадежными, отличались высокой стоимостью и большим энергопотреблением. Все это существенно ограничивало возможности построения сложных устройств ЭВМ (арифметических, управления и др.). ЭВМ первого поколения работали в однопрограммном режиме, отсутствовало совмещение работы отдельных устройств во времени, что в целом наряду с низким быстродействием элементов отрицательно сказывалась на общей производительности ЭВМ.
Ко второму поколению относятся полупроводниковые ЭВМ (примерно 1959–1967 гг.), в которых электронные лампы были полностью заменены транзисторами[368]
. В технологии изготовления ЭВМ второго поколения широко применялись методы печатного монтажа.В ЭВМ второго поколения были применены новые принципы и средства организации работы машин: совмещение операций ввода и вывода данных с вычислениями на центральном процессоре (т. е. в той части машины, которая предназначена собственно для вычислений), повышение быстродействия процессора за счет параллельного во времени выполнения частей одной-двух команд.
Структурно-логические решения, заложенные в наиболее совершенные ЭВМ второго поколения, сделали естественным одновременный ввод и исполнение нескольких программ — так называемое мультипрограммирование. С этим режимом работы ЭВМ связано понятие пакетной обработки информации: в ЭВМ загружается пакет нескольких программ с соответствующими данными. Управляющие программы, предназначенные для реализации режима мультипрограммирования, разработанные для ряда ЭВМ в 60-х годах, являются прообразом операционных систем ЭВМ, относимых к третьему поколению.
Важным достижением вычислительной техники 60-х годов явилось широкое внедрение методов и средств автоматизации программирования.
Программы для первых ЭВМ составлялись на языке команд, используемом индивидуально для каждой конкретной машины. В процессе совершенствования ЭВМ такой метод становится не только неудобным, но и непригодным, если речь идет об описании сложных алгоритмов. Поэтому параллельно с техническим совершенствованием ЭВМ идет работа по созданию универсальных языков, пригодных для широкого класса машин. Важную роль в развитии программирования сыграли работы советских математиков А. А. Ляпунова и М. Р. Шура-Бура, создавших в 1952–1953 гг. так называемый операторный метод программирования. Впоследствии были разработаны универсальные языки, получившие широкое распространение в 60-х годах (АЛГОЛ — от англ. Algorithmic Language, ФОРТРАН — от англ. FORmula TRANslation, КОБОЛ и др.).
В середине 60-х годов появились так называемые интегральные схемы. Интегральная технология позволила в едином технологическом процессе создавать на миниатюрной монокристаллигческой пластинке полупроводника (кремния, германия) значительное количество логических элементов.
Если первые интегральные схемы (ИС) имели малый уровень интеграции (несколько логических элементов на кристалле), то в 70-х годах появились ИС среднего уровня интеграции (СИС), содержащие от нескольких десятков до нескольких сот элементов. Следующий этап интегральной технологии связан с созданием ВИС — больших интегральных схем (тысячи элементов).