В 1924 г. произошло одно из величайших событий в истории физики: французский физик Луи де Бройль (р. 1892) выдвинул идею о волновых свойствах материи, положив тем самым начало квантовой механике. Он утверждал, что волновые свойства наряду с корпускулярными присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам.
Согласно де Бройлю, любому телу массой m, движущемуся со скоростью V, соответствует волна
λ = h/mv = h/p.
Фактически аналогичная формула была известна раньше, но только применительно к частицам света — фотонам. Как было сказано выше, энергия фотона Е = hv.
Согласно Эйнштейну, между энергией н массой любого тела существует связь Е = mc2
.Зная также зависимость λv = с, легко получить для фотона λ = h/mv = h/p, где λ — длина волны, h — постоянная Планка, m — масса частицы, с — скорость света, р = mc — импульс.
Гипотеза де Бройля нуждалась в опытном подтверждении. Наиболее убедительным подтверждением существования волновых свойств материи является наблюдение (обнаружение) дифракции электронов, что и было осуществлено в 1927 г. американскими физиками Клинтоном Дэвиссоном (1881–1958) и Лестером Джермеро. и (1896–1971). Они провели следующий опыт. Пучок электронов, разогнанный в электрическом поле до энергии 100 электронвольт[319]
, направлялся на кристалл никеля. Электроны отражались от кристалла и летели лишь по некоторым избранным направлениям. Распределение электронов по направлениям оказалось таким же, как если б на кристалл падал пучок света с длиной волны, равной длине волны электронов, вычисленной по формуле де Бройля. Иначе говоря, Дэвиссон и Джермер впервые наблюдали дифракцию электронов и тем самым экспериментально подтвердили гипотезу де Бройля.В дальнейшем опыты по дифракции электронов проводились на различных кристаллах с электронами разных энергий. Более того, были выполнены опыты по дифракции нейтронов, атомов и даже молекул. Во всех случаях результаты полностью подтвердили точку зрения де Бройля.
Может все же возникнуть вопрос: почему наблюдается дифракция только микрообъектов и пе проявляются волновые свойства макротел? Почему, например, не наблюдается дифракция биллиардного шара при прохождении лузы?
Дело в том, что длина волны электрона с энергией 100 электронвольт оказывается приблизительно равной 10-8
см. Эта величина сравнима с повторяющимся в кристалле расстоянием между соседними узлами решетки. В этих условиях дифракционные эффекты легко проявляются.Длина волны биллиардного шара (масса приблизительно 100 г, скорость около 1 м/с) примерно равна 10-30
см. Она настолько меньше ширины лузы, что никакой дифракции быть не может. (По этой же причине не наблюдается дифракция при прохождении видимого света с λ = 5·10-5 см через щель в заборе шириной в несколько миллиметров.)Гипотеза де Бройля, получившая многочисленные экспериментальные подтверждения, превратилась в принципиальную основу, вероятно, наиболее широкой физической теории — квантовой механики.
Дальнейшее развитие этого нового необычайно плодотворного направления было в основном достигнуто в конце 20-х — начале 30-х годов трудами известных физиков: Макса Борна (1882–1970), Вернера Гейзенберга (1901–1976), Поля Дирака (р. 1902), Эрвина Шрёдингера
(1887–1961), а также Вольфганга Паули (1900–1958), Энрико Ферми (1901–1954), Владимира Александровича Фока (1898–1974) и многих других.
Отдельными разделами квантовой механики стали атомная физика, теория излучения, теория строения молекул (которую иногда называют квантовой химией), теория твердого тела, теория взаимодействия элементарных частиц[320]
, теория строения атомного ядра и др. Многочисленные и разнообразные эксперименты неизменно подтверждали выводы квантовой механики. Даже такое, можно сказать неожиданное, предсказание квантовой механики, как существование позитрона (так сказать, электрон с положительным зарядом, его называют также античастицей электрона), было подтверждено опытом. Следует сказать, что квантовая механика — более широкая теория по сравнению с классической механикой, которая является частным случаем квантовой механики.Конечно, квантовая механика отнюдь не является пределом знаний в своей области. Еще раз хотим напомнить читателю, что никакая теория не может закрыть горизонты развития науки. В то же время можно не сомневаться в том, что квантовая механика навсегда сохранится в золотом фонде науки.