Читаем Стратегические игры полностью

Далее мы представим еще более общий и неожиданный результат, обусловленный изменениями вероятностей применения чистых стратегий в смешанной стратегии. Условие безразличия соперника означает, что равновесные вероятности чистых стратегий в смешанной стратегии каждого игрока зависят исключительно от выигрышей другого игрока, а не от его собственных. Рассмотрим игру в доверие на рис. 7.3. Предположим, выигрыш Салли от встречи в Local Latte увеличивается с 2 до 3, тогда как все остальные выигрыши не меняются. Теперь в случае p-комбинации Гарри Салли получит выигрыш 1 × p + 0 × (1 — p) = p, если выберет Starbucks, и 0 × p + 3 × (1 — p) = 3–3p, если Local Latte. Условие безразличия Салли выглядит так: p = 3–3p, или 4p = 3, или p = 3/4 по сравнению со значением 2/3, вычисленным нами выше для p-комбинации Гарри в исходной игре. Расчет условия безразличия Гарри остается прежним и дает результат q = 2/3 в случае равновесной стратегии Салли. Изменение выигрышей Салли меняет вероятности применения чистых стратегий в смешанной стратегии Гарри, а не Салли! В упражнении S13 у вас будет возможность доказать истинность этого вывода в общей формулировке: доли чистых стратегий в равновесной смешанной стратегии игрока меняются не вследствие изменения его выигрышей, а только в случае изменения выигрышей его соперника.

В. Рискованный и безопасный выбор в играх с нулевой суммой

В спорте некоторые стратегии сравнительно безопасны; они не приводят к полной катастрофе, даже если соперник предвидит такой выбор, но и не позволяют добиться сверхрезультатов, если оказываются неожиданными для соперника. Другие стратегии достаточно рискованны; они обеспечивают блестящие результаты, если другая сторона к ним не готова, но терпят полное поражение, когда другая сторона готова. В американском футболе на третьем дауне, когда остается пройти один ярд, пробежка на середину поля — это безопасная стратегия, а длинный пас — рискованная. Здесь возникает интересный вопрос, поскольку порой в ситуациях «третий даун, один ярд» на кону стоит больше, чем в других подобных ситуациях. Например, начало игры с 10-ярдовой линии соперника гораздо сильнее влияет на возможное количество заработанных очков, чем ее старт с вашей собственной 20-ярдовой линии. Вопрос в том, следует ли вам чаще или реже прибегать к рискованным стратегиям в случае более высоких ставок, чем низких.

Для того чтобы представить это в более конкретном виде, проанализируйте вероятности успеха, представленные на рис. 7.6. (Обратите внимание, что тогда как в теннисе мы использовали проценты от 0 до 100, здесь мы используем вероятности от 0 до 1.) Безопасная игра команды нападения — пробежка; вероятность успешного первого дауна составляет 60 %, если команда защиты ожидает пробежки, и 70 %, если защита полагает, что будет пас. Рискованная игра команды нападения — пас, поскольку вероятность успеха в куда большей степени зависит от действий команды защиты; вероятность успеха равна 80 %, если защита ожидает пробежки, и всего 30 %, если защита рассчитывает на пас.


Рис. 7.6. Вероятность успеха команды нападения в игре «третий даун, один ярд»


Допустим, в случае успешной игры команда защиты получает выигрыш, равный V, а неудачной — выигрыш 0. Выигрыш V может представлять собой то или иное количество очков, скажем, три очка за гол в ворота или семь очков за тачдаун. Кроме того, выигрыш V может отображать определенный уровень статуса или количество денег, заработанных командой; например, V = 100 за успешную игру в обычном матче или V = 1 000 000 за победу в Суперкубке по американскому футболу[96].

В фактической таблице игры между командами нападения и защиты, представленной на рис. 7.7, отображены ожидаемые выигрыши каждой команды. Они представляют собой среднее между выигрышем V при успешной игре и 0 при неудачной. Например, ожидаемый выигрыш команды нападения, использующей стратегию «пробежка» в случае, если команда защиты ожидает стратегии «пробежка», составляет 0,6 × V + 0,4 × 0 = 0,6V. Поскольку данная игра относится к категории игр с нулевой суммой, выигрыш команды защиты в этой ячейке равен –0,6V. Аналогичным образом вы можете рассчитать выигрыши во всех остальных ячейках таблицы, чтобы убедиться, что значения, приведенные ниже, правильные.


Рис. 7.7. Игра «третий даун, один ярд»


При равновесии в смешанных стратегиях вероятность p того, что команда нападения выберет стратегию «пробежка», определяется свойством безразличия соперника. Стало быть, правильное значение p удовлетворяет следующему условию:

p[–0,6V] + (1 — p)[–0,8V] = p[–0,7V] + (1 — p)[–0,3V].

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг