Читаем Стратегические игры полностью

Когда речь заходит о голосовании, вы, наверное, в первую очередь вспоминаете о выборах президента, затем, возможно, о выборах мэра, а иногда даже о выборах старосты класса в школе. А кто-то вспоминает и об университетском футболисте, выигравшем в прошлом году кубок Хайсмана, или о фильме, получившем «Оскар», или о последнем решении Верховного суда. Все эти ситуации связаны с голосованием, хотя и отличаются по числу участников, длине списка кандидатов или количеству вариантов выбора, доступных голосующим, а также процедур подсчета голосов и определения победителя. В каждом случае стратегическое мышление может сыграть определенную роль в схеме заполнения бюллетеней для голосования. Кроме того, стратегические соображения могут иметь решающее значение при выборе метода проведения голосования и подсчета голосов.

Процедуры голосования существенно разнятся не потому, что одни подразумевают выбор лауреатов премии «Оскар», а другие — выбор президента, а потому, что конкретные процедуры обладают свойствами, которые делают их более (или менее) подходящими для тех или иных ситуаций, требующих голосования.

Например, в последнее десятилетие стали расти опасения, что выборы, которые проходят по мажоритарной системе (когда побеждает кандидат, набравший большее количество голосов), способствуют формированию двухпартийной системы, из-за чего в более чем десяти американских городах были изменены правила голосования[255]. Кое-где эти изменения привели к результатам, отличавшимся от тех, которые были бы получены при прежней системе голосования по принципу относительного большинства. Например, мэр Окленда Джин Куан заняла этот пост в ноябре 2010 года, несмотря на то что ей отдали первое место только 24 % избирателей, тогда как за кандидата, оказавшегося в итоге вторым, проголосовало 35 % избирателей. В последнем туре преференциального голосования, проходившем в этом городе, Куан получила 51 % голосов, а оставшиеся 49 % достались кандидату, занявшему второе место. Мы проанализируем столь парадоксальные результаты в разделе 2 данной главы.

С учетом того, что разные процедуры голосования способны обеспечить разные результаты, становится понятен диапазон возможностей стратегического поведения при выборе процедуры, которая может генерировать предпочтительный для вас результат. Нередки случаи, когда избиратели голосуют не за, а вопреки, то есть за того (или то), кто не является для них лучшим вариантом, но позволяет избежать худшего варианта. Данный тип стратегического поведения весьма распространен, когда это позволяют процедуры голосования. Как избиратель вы должны знать о преимуществах, обусловленных таким стратегическим искажением предпочтений, а также о том, что другие могут применить эту тактику против вас.

В следующих разделах главы мы сначала познакомим вас с диапазоном существующих процедур голосования, а также с некоторыми парадоксальными результатами, порой возникающими при использовании определенных процедур. Затем рассмотрим, как можно оценить эффективность этих процедур, прежде чем приступать к изучению стратегического поведения участников голосования и способов манипулирования его результатами. И наконец, представим два варианта результата, известного как теорема о медианном избирателе, в виде игры с нулевой суммой с двумя участниками, в которой используются дискретные и непрерывные стратегии.

1. Правила и процедуры голосования

Наличие многочисленных процедур голосования позволяет сделать выбор из списка альтернатив (кандидатов или вопросов). Но что примечательно, даже если таких альтернатив всего три, структура выборов существенно усложняется. В данном разделе мы опишем ряд процедур, используемых в трех широких классах методов голосования, или методов агрегирования голосов. Количество возможных процедур голосования огромно, и приведенную нами простую классификацию можно существенно расширить, включив в нее выборы, основанные на сочетании таких процедур. Этой теме посвящено немало работ как в области экономики, так и в области политологии. Мы не задавались целью представить их исчерпывающий обзор, а, скорее, хотели помочь вам составить о них общее представление. Если вас интересует эта тема, рекомендуем прочитать дополнительную литературу, в которой содержится более подробная информация[256].

А. Бинарные методы
Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг