Читаем Стратегические игры полностью

Методы агрегирования голосов можно разделить на категории по числу вариантов, или кандидатов, рассматриваемых избирателями в любой момент времени. Бинарные методы подразумевают выбор одной из двух альтернатив за один раз. Во время выборов с участием ровно двух кандидатов голоса можно агрегировать посредством использования хорошо известного принципа простого большинства, согласно которому побеждает кандидат, получивший большинство голосов. При наличии более двух альтернатив можно применить парное голосование — метод, который сводится к повторению бинарного голосования. Парные процедуры голосования многоэтапны и подразумевают голосование по парам альтернатив в ходе нескольких туров по принципу относительного большинства для определения наиболее предпочтительной альтернативы.

Одна из процедур парного голосования, в соответствии с которой каждая альтернатива выставляется против каждой из оставшихся альтернатив в процессе парного сравнения по принципу большинства, обозначается термином «метод Кондорсе», по имени французского ученого XVIII столетия Мари Жана Антуана Николя де Карита, маркиза де Кондорсе. Он полагал, что выиграть выборы должен кандидат, который победит всех остальных кандидатов в серии состязаний один на один; такого кандидата (или альтернативу) в настоящее время называют победителем по Кондорсе. Другие парные процедуры голосования подразумевают вычисление таких показателей, как индекс Коупленда, который отражает количество побед и поражений альтернативы в процессе парного сравнения. В первом туре Чемпионата мира по футболу разновидность индекса Коупленда позволяет определить, какие команды из каждой группы перейдут во второй тур чемпионата[257].

Еще одна известная процедура парного сравнения, используемая при наличии трех возможных альтернатив, — это процедура внесения поправок, применения которой требует регламент Конгресса США в случае, когда законопроект ставится на голосование. Когда законопроект выносится на обсуждение Конгресса, его любой исправленный вариант сначала должен выиграть в голосовании против первоначального варианта. Вариант, победивший в первом туре голосования, выносится на голосование против действующего закона, и Конгрессмены голосуют за то, принимать ли ту версию закона, которая победила в первом туре; затем для определения победителя можно применить принцип простого большинства. Процедуру внесения поправок можно использовать для рассмотрения любых трех альтернатив: для этого сначала проводится первый тур голосования с участием двух альтернатив, а во время второго тура третья альтернатива выставляется против победившей альтернативы.

Б. Множественные методы

Множественные методы позволяют избирателям рассматривать три и более альтернативы одновременно. Одна группа множественных методов голосования подразумевает использование информации о позиции альтернатив в бюллетене для определения количества баллов, учитываемых при подсчете результатов голосования; такие методы голосования известны как позиционные методы. Уже знакомый вам принцип относительного большинства голосов — особый случай позиционного метода, когда каждый участник голосования отдает один голос за самую предпочтительную для него альтернативу. При подсчете голосов ей присваивается одно очко; победителем становится альтернатива, получившая наибольшее количество голосов (баллов). Обратите внимание, что победителю голосования, проведенного по принципу относительного большинства, не нужно набирать большинство (51 %) голосов. Например, во время президентских выборов 2012 года в Мексике Энрике Пенья Ньето стал президентом, набрав 38,21 % голосов; его оппоненты получили 31,6 %, 25,4 % и 2,3 % голосов. Столь незначительный отрыв от соперников вызвал вопросы о легитимности выборов президента в Мексике, особенно в 2006 году, когда разрыв составлял всего 0,58 %. Еще один особый случай позиционного метода — метод относительного антибольшинства, при котором избирателям предлагается голосовать против одного пункта в списке или, наоборот, за все пункты, кроме одного. В ходе подсчета голосов альтернативе, получившей голос против, присваивается −1 очко, или все альтернативы, кроме одной, получают по 1 баллу, а альтернатива, против которой подан голос, 0 баллов.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг