Читаем Стратегические игры полностью

Предположим, рестораны могут достичь поддающегося принудительному выполнению соглашения, по условиям которого оба назначают высокую цену и Донна выплачивает Пирсу определенную сумму. Альтернатива такому соглашению — некооперативное равновесие в доминирующих стратегиях. Владельцы ресторанов ведут переговоры о заключении соглашения, причем переговорная позиция Донны в 2,5 раза сильнее, чем Пирса. Какую сумму выплатит Донна Пирсу по условиям соглашения, достигнутого в результате переговоров?

U2. Рассмотрим двух игроков, договаривающихся по поводу излишка, изначально равного целой величине V, посредством чередующихся предложений. Другими словами, игрок 1 делает предложение в первом раунде; если игрок 2 отклоняет его, он делает предложение во втором раунде; если игрок 1 отклоняет его, он делает предложение в третьем раунде и т. д. Предположим, на протяжении каждого периода имеющийся излишек уменьшается на постоянную величину c = 1. Например, если игроки достигают соглашения во втором раунде, они делят излишек V — 1, если в пятом раунде, то V — 4. Это означает, что игра закончится после V раундов, поскольку больше будет не о чем договариваться. (Для сравнения вспомните пример с билетом на футбол, в котором его стоимость для болельщика начиналась со 100 долларов и снижалась на 25 долларов за одну четверть в течение четырех четвертей матча.) В этой задаче сперва необходимо найти равновесие обратных рассуждений, а затем равновесие обобщенной версии этой игры, в которой два игрока могут иметь BATNA.

a) Начнем с простой версии. Найдите равновесие обратных рассуждений при V = 4. В каком периоде игроки достигнут соглашения? Какой выигрыш x получит игрок 1 и какой выигрыш достанется игроку 2?

b) Найдите равновесие обратных рассуждений при V = 5.

c) Найдите равновесие обратных рассуждений при V = 10.

d) Найдите равновесие обратных рассуждений при V = 11.

e) Теперь подготовьтесь обобщить результат. Каким будет равновесие обратных рассуждений при любом целом значении V? (Подсказка: вам нужно проанализировать четные и нечетные значения V по отдельности.)

Теперь рассмотрите BATNA. Представим, что к концу раунда V соглашение не достигнуто, игрок А получает выигрыш a, а игрок Б — выигрыш b. Предположим также, что a и b — целые числа, удовлетворяющие неравенству a + b < V, а значит, достигнув соглашения, игроки могут получить более высокие выигрыши, чем в противном случае.

f) Допустим, V = 4. Каким будет равновесие обратных рассуждений при любых возможных значениях a и b? (Подсказка: вам может понадобиться вывести более чем одну формулу, точно так же как в пункте e. Если вы не справитесь с этой задачей, попытайтесь сперва решить ее при конкретных значениях a и b, а затем измените их и посмотрите, что произойдет. Для того чтобы выполнить анализ методом обратных рассуждений, вам необходимо определить, на каком шаге значение V уменьшается до такого уровня, что соглашение больше не будет обеспечивать прибыль двум сторонам переговоров.)

g) Предположим, V = 5. Каким будет равновесие обратных рассуждений при любых возможных значениях a и b?

h) Каким будет равновесие обратных рассуждений при любых возможных значениях a, b и V?

i) Смягчите условие о том, что a, b и V — целые числа: пусть они будут неотрицательными, удовлетворяющими неравенству a + b < V. Также измените предположение, что значение V уменьшается на 1 каждый период: пусть оно уменьшается за каждый период на постоянную величину c > 0. Найдите равновесие обратных рассуждений в этой обобщенной задаче.

U3. Пусть x — сумма, которую просит игрок А, а y — сумма, которую просит игрок Б при первом предложении в переговорной игре с чередующимися предложениями при наличии нетерпения. Степень их нетерпения составляет r и s соответственно.

a) Если мы используем приближенные формулы x = s / (r + s) для x и y = r / (r + s) для y, а также если игрок Б в два раза нетерпеливее игрока А, то А получит две трети излишка, а Б — одну треть. Проверьте правильность этого результата.

b) Пусть r = 0,01, а s = 0,02. Сравните значения x и y, найденные с помощью метода аппроксимации, с более точными решениями для x и y, найденными посредством формул x = (s + rs)/(r + srs) и y = (r + rs)/(r + srs), выведенных в данной главе.

Глоссарий

В данном глоссарии представлены ключевые термины, встречающиеся в тексте. Мы старались дать им словесные, логически точные определения, а не подробные математические, как в более сложных учебниках.


BATNA — см. Лучшая альтернатива обсуждаемому соглашению.

Агент (agent) — более информированный игрок в игре с асимметричной информацией «принципал — агент». Принципал (менее информированный игрок) в таких играх пытается разработать механизм, позволяющий ему привести стимулы агента в соответствие со своими стимулами.

Анализ наилучших ответов (best-response analysis) — поиск в игре равновесий Нэша посредством вычисления функций или построения кривых наилучших ответов каждого игрока и их одновременное решение для стратегий всех игроков.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг