Читаем Стратегические игры полностью

Игра в доверие (assurance game) — игра, в которой каждый игрок имеет две стратегии, например «сотрудничать» и «не сотрудничать»; при этом наилучшим ответом каждого игрока является стратегия «сотрудничать», если другой игрок идет на сотрудничество, и стратегия «не сотрудничать», если другой игрок отказывается от сотрудничества, а исход «сотрудничать» / «сотрудничать» для обоих игроков лучше исхода «не сотрудничать» / «не сотрудничать».

Игра в труса (chicken) — игра, в которой у каждого игрока есть две стратегии, например «мачо» и «тюфяк», причем 1) исходы «мачо» / «тюфяк» и «тюфяк» / «мачо» — равновесия Нэша; 2) из этих двух равновесий Нэша каждый игрок предпочитает исход, где он играет роль мачо, а соперник — тюфяка; 3) исход «мачо» / «мачо» — самый неблагоприятный для обоих.

Игра в труса в реальном времени (chicken in real time) — игра в труса, при которой решение «свернуть» принимается не с самого начала, а в каждый текущий момент, и если ни один из игроков не принимает его, с течением времени риск столкновения постепенно повышается.

Игра с нулевой суммой (zero-sum game) — игра, в которой сумма выигрышей всех игроков равна нулю по каждой конфигурации их стратегий. (Это частный случай игры с постоянной суммой, но на практике они ничем не отличаются, поскольку прибавление постоянной величины ко всем выигрышам любого игрока не оказывает никакого влияния на его выбор.)

Игра с постоянной суммой (constant-sum game) — игра, в которой сумма выигрышей всех игроков представляет собой одну и ту же величину при любой комбинации стратегий. Поэтому между игроками существует жесткий конфликт интересов: более высокий выигрыш одного игрока означает снижение выигрыша всех остальных игроков. Когда размеры выигрышей подобраны таким образом, чтобы постоянная сумма равнялась нулю, это игра с нулевой суммой.

Игра «ястреб — голубь» (hawk — dove game) — эволюционная игра, в которой члены одного вида или популяции могут размножаться, чтобы следовать одной из стратегий — «ястреб» или «голубь»; в зависимости от выигрышей игра между парой произвольно выбранных членов популяции может быть либо дилеммой заключенных, либо игрой в труса.

Излишек (surplus) — излишек участника переговорной игры — это превышение его выигрыша над BATNA.

Индекс Коупленда (Copeland index) — индекс, отражающий результат альтернативы в процессе парного сравнения, когда победы, ничьи и поражения получают разное количество баллов.

Инструменты скрининга (screening devices) — методы, используемые для осуществления скрининга.

Информационное множество (information set) — совокупность узлов (на дереве игры), между которыми игрок не может провести различия при выполнении того или иного действия. Следовательно, его стратегии ограничены условием, что он должен выбирать одно и то же действие во всех точках информационного множества. При этом важно, чтобы во всех его узлах, из которых исходит одинаковое количество ветвей с одинаковыми обозначениями, действовал один и тот же игрок.

Искреннее голосование (sincere voting) — голосование, в ходе которого избиратель отдает голос за альтернативу, которую считает на данный момент лучшей, независимо от конечного результата.

Итеративное исключение доминируемых стратегий (iterated elimination of dominated strategies) — многократно повторяющийся процесс последовательного анализа стратегий игроков с поочередным исключением всех доминируемых стратегий до тех пор, пока такое исключение не станет невозможным.

Квантильное равновесие (quantal-response equilibrium, QRE) — концепция решения, допускающая возможность совершения ошибок игроками; при этом вероятность определенной ошибки меньше в случае более дорогостоящих ошибок.

Кондорсе метод (Condorcet method) — метод голосования, при котором побеждает альтернатива, превосходящая любую другую альтернативу при парном сравнении по принципу большинства.

Кондорсе парадокс (Condorcet paradox) — даже если ранжирование индивидуальных предпочтений избирателей транзитивно, нет никаких гарантий, что ранжирование социальных предпочтений, сформированное посредством голосования по методу Кондорсе, также будет транзитивным.

Кондорсе элементы (Condorcet terms) — совокупность бюллетеней, которая создает парадокс Кондорсе и должна логически обеспечивать равное распределение голосов между тремя возможными альтернативами. В выборах с участием трех кандидатов А, Б и В элементы парадокса Кондорсе — это три бюллетеня, в которых отображены такие предпочтения: кандидат A предпочитается кандидату Б, а кандидат Б — кандидату В; кандидат Б предпочитается кандидату В, а кандидат В — кандидату А; кандидат В предпочитается кандидату А, а кандидат А — кандидату Б.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг