Читаем Стратегические игры полностью

Когда стало ясно, что компьютеры способны выполнять сложные вычисления в науке и бизнесе, многие математики и программисты решили, что вскоре компьютерная шахматная программа победит именитых гроссмейстеров. Но это произошло не так быстро, хотя компьютерные технологии развивались стремительными темпами, тогда как человеческое мышление несколько поотстало. В конце концов в декабре 1992 года немецкая компьютерная программа под названием Fritz2 выиграла у чемпиона мира Гарри Каспарова несколько блицпартий. Согласно обычным правилам, каждому игроку предоставляется 2,5 часа на выполнение 40 ходов, и люди дольше удерживали превосходство. Команда специалистов, финансируемая компанией IBM, вложила немало усилий и ресурсов в разработку специализированного компьютера (получившего название Deep Blue) для игры в шахматы и соответствующего программного обеспечения. В феврале 1996 года Deep Blue выступил в роли противника Гарри Каспарова в матче из шести партий и произвел сенсацию, выиграв первую партию, но Каспаров быстро выявил его слабые места, улучшил контрстратегии и мастерски выиграл остальные партии. На протяжении следующих 15 месяцев команда IBM совершенствовала аппаратное и программное обеспечение компьютера, после чего в мае 1997 года модифицированный Deep Blue выиграл у Каспарова очередной матч из шести партий.

Таким образом, развитие компьютерных технологий характеризовалось сочетанием периодов медленного поэтапного улучшения и ряда стремительных рывков, в то время как люди, сохранив определенное превосходство, не смогли перестроиться настолько быстро, чтобы удержать передовые позиции. При ближайшем рассмотрении оказалось, что люди и компьютеры используют абсолютно разные подходы к анализу очень сложного дерева игры в шахматы.

При обдумывании хода в шахматах крайне трудно (для обоих: и людей, и компьютеров) заранее предвидеть исход игры. Но как насчет того, чтобы просчитать часть ходов, скажем 5−10, вперед и проанализировать игру в обратном порядке из этой позиции? Игра необязательно должна закончиться в рамках этого ограниченного периода; иными словами, узлы, которых вы достигнете через 5−10 ходов, не будут концевыми. Однако в соответствии с правилами игры выигрыши указываются только для концевых узлов. Следовательно, необходим некий косвенный способ присвоения правдоподобных выигрышей неконцевым узлам, поскольку вы не можете проанализировать все дерево игры методом обратных рассуждений с самого конца. Правило, согласно которому присваиваются промежуточные выигрыши, называется функцией промежуточной оценки.

В шахматах и люди, и компьютерные программы используют такой частичный упреждающий анализ в сочетании с функцией промежуточной оценки. Классический метод присваивает определенные значения каждой фигуре, а также позиционным и комбинационным преимуществам, которые могут возникнуть в процессе игры. Количественная оценка значений для различных позиций производится на основе опыта игры, накопленного всем шахматным сообществом в ходе прошлых партий, начинавшихся с соответствующих позиций или комбинаций; этот опыт называется знанием. Сумма всех числовых значений, закрепленных за шахматными фигурами и их комбинациями на той или иной позиции, и есть ее промежуточная оценка. Целесообразность хода определяется по оценке позиции, на которую предположительно выйдет игра после точного упреждающего вычисления конкретного количества (например, пяти или шести) ходов.

Дальше всего оценка промежуточных позиций продвинулась в отношении дебютов, то есть первой дюжины ходов игры. Каждый отдельно взятый дебют может привести к любому из огромного множества дальнейших ходов и позиций, однако опыт позволяет игрокам делать вывод о том, какой дебют с определенной степенью вероятности более выгоден для того или иного игрока. Эта информация записана в объемных книгах о шахматных дебютах; все шахматисты высокого класса и компьютерные программы помнят и используют эти знания.

На последних стадиях игры, когда на доске остается всего несколько фигур, сам процесс обратных рассуждений зачастую достаточно прост, чтобы быть выполнимым, и достаточно полон, чтобы дать исчерпывающий ответ. Труднее всего проанализировать миттельшпиль (середину игры), когда позиции развились до того уровня сложности, который не упростится за несколько ходов. Для поиска удачного хода из такой позиции хорошо проработанная функция промежуточной оценки может быть более значимой, чем способность рассчитать игру еще на несколько ходов вперед.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг