Читаем Стратегические игры полностью

Например, в ходе многих экспериментов разыгрывалась состоящая из одного раунда переговорная игра, где двух игроков, А и Б, выбирали из группы студентов или добровольцев. Затем экспериментатор давал им один доллар или другую оговоренную сумму, которую следовало разделить между двумя игроками по следующей схеме: игрок А предлагает, скажем, вариант «75 центов мне и 25 центов игроку Б». Если Б принимает это предложение, то доллар делится именно так, если отклоняет, то никто ничего не получает.

В данном случае анализ методом обратных рассуждений говорит о том, что игроку Б следует принять любую сумму, какой бы маленькой она ни была, поскольку альтернатива еще хуже (то есть 0), и исходя из этого игрок А вообще должен предложить «99 центов мне и 1 цент Б». Однако подобного исхода почти никогда не бывает. Большинство игроков, выступающих в роли игрока А, предлагают более справедливое, близкое к равному разделение суммы. На самом деле 50:50 — самый распространенный вариант. Мало того, большинство участников, будучи в роли игрока Б, отклоняют предложения, оставляющие им менее 25 % от общей суммы, и уходят ни с чем, а некоторые отвергают даже 40 %[29].

Многие специалисты по теории игр не согласны, что эти выводы подрывают теорию, аргументируя свою точку зрения примерно так: «Эти суммы настолько малы, что разум игроков воспринимает происходящее как нечто тривиальное. Игрок Б теряет 25 или 40 центов, что практически равно нулю, но при этом, возможно, испытывает определенное удовлетворение от того, что отказался от столь унизительного предложения. Если бы на кону стояла тысяча долларов и 25 % составляли бы приличную сумму, то любой игрок Б принял бы такое предложение». Но этот аргумент нельзя считать бесспорным. Эксперименты с гораздо более высокими ставками демонстрируют аналогичные результаты. В Индонезии, например, оперировали суммами, не очень большими в долларах, но составлявшими трехмесячный заработок участников экспериментов. И тем не менее их результаты не показали явной склонности игроков А делать предложения о менее равноценном дележе общей суммы, хотя по мере ее увеличения игроки Б были готовы принимать несколько меньшую долю. Аналогичные эксперименты, проведенные в Словацкой Республике, доказали, что серьезное изменение выигрышей не влияет на поведение неопытных игроков[30].

Как правило, у участников подобных экспериментов нет ни базовых знаний в области теории игр, ни специальных вычислительных навыков. Но это чрезвычайно простая игра, и наверняка даже самый неопытный игрок может ее проанализировать посредством обратных рассуждений, а ответы на прямые вопросы, поставленные после эксперимента, обычно говорят о том, что большинство его участников действительно делают это. Такие результаты свидетельствуют не столько о несостоятельности метода обратных рассуждений, сколько об ошибке теоретиков, полагающих, что каждого игрока интересует исключительно собственная прибыль, и не учитывающих моральный аспект вопроса. В большинстве стран общество прививает своим членам обостренное чувство справедливости, которое заставляет игроков Б отклонять любое явно несправедливое предложение. Учитывая это, игроки А предлагают практически равное разделение общей суммы.

Эти выводы подтверждают данные, полученные в рамках изучения новой науки под названием нейроэкономика. Алан Сэнфи и его коллеги сделали томограмму головного мозга игроков в момент принятия решений в ультимативной игре и обнаружили возбуждение активности в области головного мозга, отвечающей за негативные эмоции, в тот момент, когда игроки Б отклоняли «несправедливые» (менее чем 50:50) предложения о дележе общей суммы. Создается впечатление, что глубинные инстинкты и чувство гнева и отвращения причастны к таким отказам. Кроме того, исследователи обнаружили, что «несправедливые» предложения (менее чем 50:50) отклонялись реже, когда игроки Б знали, что их делает компьютер, по сравнению со случаями, когда они исходили от человека[31].

Примечательно, что игроки А демонстрируют склонность к щедрости даже при отсутствии угрозы возмездия. В радикальном варианте игры под названием диктаторская игра, где игрок А решает, как делить общую сумму, а Б вообще лишен выбора, многие игроки А все же отдают вполне приличную долю игрокам Б. Это позволяет предположить, что у игроков есть некое врожденное предпочтение к относительно равноценному распределению общей суммы[32]. Однако в игре в диктатора предложения игроков А заметно менее щедрые, чем в ультимативной игре; это доказывает, что реальный страх возмездия также весьма сильный мотиватор. Кроме того, по всей видимости, немалую роль играет и мнение о нас окружающих. Примечательно, что когда схема эксперимента меняется таким образом, чтобы даже экспериментатор не мог определить, кто предложил (или принял) разделение, готовность делиться заметно снижается.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг