Читаем Стратегические игры полностью

Мы рассмотрим ситуацию, когда в реалити-шоу осталось всего три участника: Руди, Келли и Рик. Самый старший, Руди, был честным, прямолинейным человеком, который пользовался большим авторитетом среди ранее выбывших участников шоу. По всеобщему мнению, если бы Руди был одним из двух последних игроков, то именно он стал бы победителем в реалити-шоу. Следовательно, и Келли, и Рик были заинтересованы в том, чтобы на последнем голосовании противостоять друг другу, а не Руди. Однако ни один из них не хотел играть решающую роль в голосовании против Руди, потому что, когда в игре остается три участника, голос обладателя иммунитета фактически становится решающим, поскольку два других игрока голосуют друг против друга. Таким образом, члены жюри точно бы знали, кто ответственен за изгнание Руди, и, учитывая его популярность, неодобрительно отнеслись бы к голосованию против него. Человек, сделавший это, снизил бы свои шансы на последнем голосовании. Это было особенно актуально для Рика, так как всем было известно, что он заключил с Руди союз.

Испытание на получение иммунитета было проверкой на выносливость: каждый участник игры должен был стоять на неудобной опоре, наклонившись так, чтобы прикасаться одной рукой к установленному на центральном столбе тотему под названием «идол иммунитета». Игрок, который отрывал от него руку хотя бы на мгновение, проигрывал испытание; победителем становился тот, кто смог продержаться дольше всех.

Через полтора часа после начала испытания Рик понял, что его лучшая стратегия — намеренно его проиграть. Тогда, если Руди получит иммунитет, он сохранит союз и поддержит Рика — Руди был известен как хозяин своего слова. В таком случае Рик проиграл бы в итоге Руди, но для него это было бы ничуть не хуже, чем если бы он выиграл состязание и поддержал Руди. Если иммунитет получит Келли (а это куда более вероятно), то она будет заинтересована голосовать против Руди: у нее есть хотя бы какие-то шансы в борьбе против Рика, но никаких — в противостоянии с Руди. При таком сценарии шансы Рика на победу становились весьма неплохими. С другой стороны, если бы сам Рик получил иммунитет, а затем проголосовал против Руди, его шансы в борьбе против Келли снизились бы в связи с голосованием за изгнание Руди.

В итоге Рик умышленно сошел с опоры и впоследствии совершенно четко объяснил причины своего решения перед камерой. Его расчет оказался верным. Келли выиграла испытание и проголосовала против Руди. А в решающем голосовании жюри с перевесом в один голос отдало звание победителя Рику.

Фактически размышления Рика представляли собой анализ дерева игры методом обратных рассуждений. Он выполнил его интуитивно, без построения дерева, стоя в неудобной позе, ухватившись за идола иммунитета. Но ему понадобилось полтора часа, чтобы прийти к такому выводу.

Это дерево игры изображено на рис. 3.11. Очевидно, что оно гораздо более сложное по сравнению с деревьями, представленными в предыдущих разделах. В нем больше ветвей и ходов, кроме того, есть неопределенные исходы, а вероятность победы или поражения в различных альтернативных ситуациях необходимо оценивать, поскольку точное значение неизвестно. Однако вы увидите, как в процессе анализа дерева игры мы будем делать обоснованные предположения относительно шансов на победу или поражение.


Рис. 3.11. Дерево игры в иммунитет в реалити-шоу Survivor


В начальном узле Рик решает, стоит ли продолжать участвовать в испытании на получение иммунитета. В любом случае возможного победителя с уверенностью предсказать нельзя, что отображено на дереве игры и позволяет сделать выбор «природе», как в ситуации с подбрасыванием монеты на рис. 3.1. Если Рик продолжит игру, «природа» выберет победителя из трех участников состязания. Поскольку фактические значения вероятности нам неизвестны, мы возьмем конкретные значения для наглядности и укажем важные исходные предположения. Первое состоит в том, что Келли обладает высокой выносливостью, а Руди, будучи самым старшим, вряд ли победит. Поэтому мы присваиваем следующие значения вероятности победы в случае, если Рик решит продолжить игру: Келли — 0,5 (50 %), Рик — 0,45 и Руди — всего 0,05. Если Рик сойдет с дистанции, «природа» случайным образом выберет победителя из двух оставшихся игроков. Здесь мы основываемся на предположении, что Келли выиграет с вероятностью 0,9, а Руди — 0,1.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг