Читаем Структура реальности. Наука параллельных вселенных полностью

Самый очевидный метод разложения на множители – делить вводимое число на все возможные множители, начиная с 2 и продолжая каждым нечетным числом, до тех пор, пока введенное число не разделится без остатка. По крайней мере, один из множителей (с учетом того, что введенное число не является простым) не может быть больше квадратного корня введенного числа, и это позволяет оценить, сколько времени может потребовать данный метод. В рассматриваемом случае наш компьютер найдет меньший из двух множителей, 2 594 209, примерно за секунду с небольшим. Однако если исходное число будет в десять раз больше, а его квадратный корень примерно в три раза больше, то разложение его на множители по этому методу займет в три раза больше времени. Другими словами, увеличение вводимого числа на один разряд уже утроит время обработки. Увеличение его еще на один разряд снова утроит это время и т. д. Таким образом, время обработки будет увеличиваться в геометрической прогрессии, т. е. экспоненциально, с увеличением количества разрядов в раскладываемом на множители числе. Разложение на множители числа с 25-значными множителями по этому методу заняло бы все компьютеры на Земле на несколько веков.

Этот метод можно усовершенствовать, однако всем современным методам разложения числа на множители присуще это свойство экспоненциального роста. Самое большое число, которое было «в гневе» (а это было действительно так) разложено на множители, – число, сомножители которого тайно выбрали одни математики, чтобы бросить вызов другим математикам, – имело 129 цифр[38]. Разложение на множители выполнили с помощью сети Интернет глобальными совместными усилиями, в которых были задействованы тысячи компьютеров. Знаменитый специалист по алгоритмам Дональд Кнут[39] оценил, что разложение на множители 250-значного числа при использовании самых эффективных из известных методов, с помощью сети, состоящей из миллиона компьютеров, заняло бы более миллиона лет. Такие вещи трудно оценить, но даже если Кнут был чрезмерно пессимистичен, то нужно взять числа всего на несколько разрядов большие, и задача во много раз усложнится. Именно это мы имеем в виду, когда говорим, что разложение на множители больших чисел – труднорешаемая задача. Все это очень сильно отличается от умножения, где, как мы видели, операцию с парой 250-значных чисел можно выполнить на домашнем компьютере. Никто не может даже представить себе, как можно разложить на множители числа, состоящие из тысячи или миллиона цифр.

По крайней мере, никто не мог этого представить до недавнего времени.

В 1982 году физик Ричард Фейнман[40] занимался компьютерным моделированием квантово-механических объектов. Его отправной точкой было факт, известный уже в течение некоторого времени, важность которого, однако, еще не была оценена, а именно, что задача предсказания поведения квантово-механических систем (или, как мы можем это переформулировать – воспроизведения квантово-механических сред в виртуальной реальности) в общем случае является труднорешаемой. Одна из причин, по которой важность этого недооценивали, состояла в том, что никто и не ожидал особенно легкого предсказания интересных физических явлений с помощью компьютера. Возьмите, например, прогноз погоды или землетрясения. Несмотря на то что нужные уравнения известны, все знают, как трудно применять их в реальных ситуациях. В последнее время к этому привлекли широкое внимание в популярных книгах и статьях о хаосе и «эффекте бабочки». Но не эти эффекты ответственны за трудности, с которыми столкнулся Фейнман, по той простой причине, что они имеют место только в классической физике – то есть не в реальности, поскольку реальность квантово-механическая. Тем не менее я хочу сделать несколько замечаний относительно «хаотических» движений в классике, только чтобы подчеркнуть глубоко различный характер классической и квантовой непредсказуемости.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика