Читаем Структура реальности. Наука параллельных вселенных полностью

Один фотон входит в интерферометр сверху слева, как показано на рис. 9.3. Во всех вселенных, где проводят эксперимент, фотон и его партнеры движутся к интерферометру по одной и той же траектории. Следовательно, эти вселенные идентичны. Но как только фотон попадает на полупрозрачное зеркало, первоначально идентичные вселенные становятся различными. В половине из них фотон проходит через зеркало и движется вправо вдоль верхней стороны интерферометра. В остальных вселенных фотон отражается от зеркала и идет вниз вдоль левой стороны интерферометра. Затем эти варианты фотона в разных группах вселенных попадают в обычные зеркала справа сверху и слева снизу соответственно и отражаются от них. Таким образом, в конце они одновременно попадают на полупрозрачное зеркало справа снизу и интерферируют друг с другом. Не забывайте, что мы запускали в аппарат только один фотон, и в каждой вселенной по-прежнему находится только один фотон. Во всех вселенных этот фотон теперь попал в правое нижнее зеркало. В половине вселенных он подошел к этому зеркалу слева, в другой половине – сверху. Между разновидностями фотона из этих двух групп вселенных произошла сильная интерференция. Суммарный эффект зависит от точной геометрии ситуации, но на рис. 9.3 изображен тот случай, когда во всех вселенных фотон в конце движется вправо сквозь зеркало, и ни в одной вселенной он не проходит и не отражается вниз. Таким образом, в конце эксперимента все вселенные так же идентичны, как и в начале. Они отличались и интерферировали друг с другом лишь краткую долю секунды в промежуточном состоянии.



Это замечательное явление неслучайной интерференции – почти такое же неизбежное свидетельство существования мультиверса, как и картина теней. Так происходит из-за того, что описанный мной результат несовместим ни с одной из двух возможных траекторий движения частицы в одной вселенной. Если мы, например, направим фотон, идущий вправо вдоль нижнего плеча интерферометра, он

может пройти сквозь второе полупрозрачное зеркало, как и в эксперименте с интерференцией фотона. Но может и не пройти – иногда он будет отклоняться вниз. Точно так же фотон, идущий вниз, вдоль правого плеча интерферометра, может отклониться вправо, как в эксперименте с интерференцией, или просто пройти прямо вниз. Таким образом, на какую бы траекторию вы ни направили один фотон внутри
аппарата, направление его выхода будет случайным. Результат можно предсказать только в том случае, когда между двумя траекториями произойдет интерференция. Следовательно, непосредственно перед окончанием эксперимента с интерференцией в аппарате присутствует нечто, что не может быть одним фотоном на одной траектории: например, это не может быть просто фотон, который перемещается вдоль нижнего плеча интерферометра. Там должно быть нечто еще, что мешает ему отразиться вниз. Там не может быть и просто фотон, который перемещается вдоль правого плеча интерферометра; там должно быть нечто еще, что мешает ему двигаться прямо вниз, как это могло бы произойти в некоторых случаях, если бы он был там один. Как и в случае с тенями, можно придумать другие эксперименты, показывающие, что это «нечто еще» обладает всеми свойствами фотона, который перемещается вдоль другой траектории и интерферирует с видимым нами фотоном, но ни с чем другим в нашей Вселенной.

Поскольку в этом опыте присутствуют только два различных вида вселенных, вычисление того, что произойдет, займет всего в два раза больше времени, чем в случае, если бы частица подчинялась классическим законам – скажем, если бы мы вычисляли траекторию движения бильярдного шара. Вряд ли коэффициент два превратит такую вычислительную задачу в труднорешаемую. Однако мы уже видели, что довольно легко достичь и гораздо более высокой степени многообразия. В экспериментах с тенями один фотон проходит через перегородку с несколькими маленькими отверстиями и попадает на экран. Предположим, что в перегородке тысяча отверстий. На экране есть места, куда может попасть фотон (и попадает в некоторых вселенных), и места, куда он попасть не может. Чтобы вычислить, может ли конкретная точка экрана принять фотон или нет, мы должны вычислить эффекты взаимной интерференции вариантов фотона из тысячи параллельных вселенных. В частности, мы должны вычислить тысячу траекторий движения фотона от перегородки до данной точки экрана, затем вычислить влияния этих фотонов друг на друга так, чтобы определить, не помешают ли все они друг другу достигнуть этой точки. Таким образом, мы должны выполнить примерно в тысячу раз больше вычислений, чем нам пришлось бы, если бы мы определяли, попадет ли в конкретную точку классическая частица.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика