Читаем Структура реальности. Наука параллельных вселенных полностью

Сложность такого рода вычислений показывает нам, что в квантово-механической среде происходит гораздо больше, чем (в буквальном смысле) видит глаз. И я утверждал, ссылаясь на критерий реальности д-ра Джонсона в применении к вычислительной сложности, что эта самая сложность – основная причина, по которой бессмысленно отрицать существование оставшейся части мультиверса. Но возможны гораздо более высокие степени многообразия, когда в интерференцию вовлекаются две взаимодействующие частицы или больше. Допустим, что для каждой из двух взаимодействующих частиц открыта, скажем, тысяча траекторий. Тогда эта пара на промежуточном этапе эксперимента может оказаться в миллионе различных состояний, так что может быть до миллиона вселенных, различающихся поведением этой пары частиц. Если взаимодействуют три частицы, то количество различных вселенных может увеличиться до миллиарда; четыре частицы – до триллиона и т. д. Таким образом, количество различных историй, которые нам пришлось бы вычислить, если бы мы захотели предсказать то, что произойдет в таких случаях, увеличивается экспоненциально с ростом числа взаимодействующих частиц. Именно поэтому задача вычисления поведения типичной квантовой системы является труднорешаемой в полном смысле этого слова.

Именно этим – труднорешаемостью – и занимался Фейнман. Мы видим, что она не имеет ничего общего с непредсказуемостью: напротив, наиболее ясно она проявляется в квантовых явлениях с высокой степенью предсказуемости. Так происходит потому, что в таких явлениях один и тот же определенный результат имеет место во всех вселенных, однако этот результат – итог интерференции между огромным количеством вселенных, которые в процессе эксперимента отличались друг от друга. Все это в принципе предсказуемо на основе квантовой теории и не слишком чувствительно к начальным условиям. Предсказать, что в таких экспериментах результат всегда будет одним и тем же, становится трудно потому, что для этого необходимо выполнить чрезмерно большой объем вычислений.

Труднорешаемость в принципе является гораздо большим препятствием для универсальности, чем могла бы быть непредсказуемость. Я уже говорил, что при абсолютно точном воспроизведении рулетки не нужно (а в действительности и не должно быть!), чтобы выдаваемая ею последовательность чисел совпадала с реальной. Подобным образом мы не можем заранее подготовить воспроизведение завтрашней погоды в виртуальной реальности. Но мы можем (или однажды сможем) осуществить воспроизведение погоды, которая хотя и не будет такой же, как реальные условия, имевшие место в какой-то исторический день, но тем не менее будет вести себя столь реалистично, что ни один пользователь, каким бы экспертом он ни был, не сможет отличить ее от настоящей погоды. То же самое касается и любой среды, которая не проявляет эффектов квантовой интерференции (что означает большинство сред). Воспроизведение такой среды в виртуальной реальности – легкая вычислительная задача. Однако оказалось, что нет эффективного способа воспроизведения сред, в которых проявляются эффекты квантовой интерференции. Без выполнения экспоненциально больших объемов вычислений как убедиться, что в этих случаях воспроизводимая нами среда не будет демонстрировать такого поведения, которого никогда не бывает в реальной среде из-за какого-нибудь явления интерференции?

Может показаться естественным вывод о том, что реальность все-таки не показывает подлинной вычислительной универсальности, поскольку явление интерференции невозможно воспроизвести с разумными затратами. Однако Фейнман сделал противоположный вывод и был совершенно прав! Вместо того чтобы считать труднорешаемость задачи воспроизведения квантовых явлений препятствием, Фейнман счел ее благоприятной возможностью. Если для того, чтобы узнать исход эксперимента с интерференцией, необходимо выполнить так много вычислений, то сам факт проведения такого эксперимента и измерения его результатов равносилен выполнению сложного вычисления. Таким образом, рассуждал Фейнман, наверное, эффективно воспроизводить квантовые среды все-таки возможно, если позволить компьютеру проводить эксперименты над реальным квантово-механическим объектом. Компьютер выбрал бы, какие измерения сделать на вспомогательной составляющей квантового оборудования во время проведения эксперимента, и включил бы результаты этих измерений в свои вычисления.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика