Размороженную клубнику положим в полиэтиленовый пакет и добавим туда ананасовый сок (желательно свежий), содержащий большое количество фермента бромелина. Этот фермент является протеазой (протеиназой), то есть способен разрушать белки. От белков нам желательно избавиться, потому что некоторые из них могут разрушать ДНК. Концентрированная протеаза из ананаса используется для удаления омертвевшей ткани после сильных ожогов, а также для маринования мяса на шашлыки (мясо становится более мягким). Есть предположение, что ананасовый сок благодаря столь высокому содержанию протеаз улучшает пищеварение.
Содержимое пакета нужно как следует перемешать и размять, чтобы ДНК оказалась в растворе. От мякоти придется избавиться – для этого можно использовать марлю или дуршлаг. Жидкость, отфильтрованную от мякоти, переливаем в стакан и достаем очень крепкий алкоголь. Желательно, чтобы в нем было больше 70
Алкоголь нужно добавлять в коктейль очень медленно, по краешку стакана. Желательная высота слоя спирта – несколько сантиметров. Ни в коем случае спирт не должен перемешиваться с соком. В спирте ДНК не растворяется, поэтому, если все сделать аккуратно, получится двухслойный напиток, а между слоями сформируются беловатые сгустки ДНК. Их можно подцепить палочкой и съесть. Все совершенно натурально!
Конечно, в лаборатории используют гораздо более стандартизованные и эффективные методы выделения ДНК. Быструю заморозку клеток можно осуществлять в жидком азоте. Кроме того, для разрушения клеточных оболочек можно использовать детергент (вроде моющего средства), например раствор
С генной инженерией не все так просто, как с выделением ДНК. Вам потребуется объект, который вы хотите модифицировать, например бактерия или растение, один из множества инструментов для генной модификации и, собственно, та конструкция из ДНК, которую вы хотите перенести. В качестве примера попробуем создать флуоресцирующую бактерию. Доктор М, а также другие ученые до него уже нашли для нас гены, которые кодируют флуоресцентные белки, и выложили их последовательности нуклеотидов в открытые базы данных, что существенно облегчает поставленную перед нами задачу.
В 1961 году японский ученый Осаму Симомура выделил из медузы рода
В 1992 году американский ученый Дуглас Прэшер с соавторами установили последовательность гена GFP301
. К сожалению, ученому самым обидным образом не хватило финансирования, чтобы после продолжить изучение гена. Прэшер едва сводил концы с концами: какое-то время он даже ездил на машине с надписью “ученому нужна работа" и принимал пожертвования. Тем временем геном GFP независимо заинтересовались ученые Мартин Чалфи и Роджер Цянь. Прэшер, полагая, что сам с изучением GFP не справится, согласился передать ген коллегам для проведения дальнейших экспериментов.