Читаем Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей полностью

Напоследок у нас осталось еще одно, пожалуй, наиболее интересное и сложное оружие в руках генного инженера, за открытие которого, несомненно, дадут Нобелевскую премию. Я уже упоминал о нем, рассказывая про способность бактерий модифицировать свой собственный геном. Речь идет о CRISPR-системе. В 2000 году группа испанских био-информатиков обнаружила загадочное явление – скопление похожих друг на друга (повторяющихся) последовательностей в геномах многих прокариот[310]. Между повторяющимися последовательностями находились уникальные участки ДНК длиной в несколько десятков нуклеотидов, которые ученые назвали спейсерами. Представьте шахматную доску, где в одном ряду на черных клетках стоят различные фигуры, а на белых – одинаковые пешки. Повторяющиеся элементы оказались похожими даже в очень разных группах бактерий и архей, поэтому было выдвинуто предположение, что эти последовательности играют важную, но пока неизвестную роль в жизни прокариотических клеток.

В 2005 году три группы исследователей независимо обнаружили, что бактерии направленно встраивают небольшие фрагменты чужеродной ДНК (например, куски геномов бактериофагов) в свой геном в виде тех самых спейсеров311–313. Оказалось, что встраивание происходит в определенном месте бактериального генома, которое получило название «CRISPR-кассета». Но для чего это бактериям? Группа эволюционного биолога Евгения Кунина (одного из самых цитируемых современных ученых и автора книги «Логика случая») заинтересовалась вопросом о функциях спейсеров. Исследователи проанализировали имеющиеся генетические последовательности CRISPR-кассет и в 2006 году предсказали, что мы имеем дело с системой бактериального иммунитета[314].

Как потом выяснилось, группа Кунина была права не только насчет функции CRISPR-кассет, но и насчет механизма работы бактериального иммунитета. Они предположили, что этот механизм похож на РНК-интерференцию эукариот. Напомню, что при РНК-интерференции короткие фрагменты чужеродной РНК используются особыми клеточными белками для поиска длинных чужеродных молекул РНК и их уничтожения. Аналогично CRISPR-система бактерий использует короткие фрагменты «направляющих РНК», синтезированных со спейсеров, для обнаружения полноразмерных молекул ДНК бактериофагов.

Бактерии производят длинные молекулы РНК, содержащие последовательности всех спейсеров. Эти молекулы разрезаются на короткие фрагменты, каждый из которых соответствует ровно одному спейсеру. Полученные направляющие РНК помогают комплексу белков находить любые генетические последовательности, комплементарные спей-серу, например ДНК вирусов. Обнаруженные фрагменты после опознания разрезаются. Подобно антивирусным программам, бактерии регулярно пополняют свою «базу данных» спейсеров, когда сталкиваются с новыми бактериофагами (если переживают эту встречу).

Подтверждение роли CRISPR-системы в бактериальном иммунитете было опубликовано в 2007 году в журнале Science и принадлежит группе ученых из компании Damsco[315]. Исследователи хотели улучшить йогурт, защитив молочнокислые бактерии от бактериофагов, но волей случая внесли вклад в открытие одного из самых важных методов редактирования ДНК живых организмов.

В 2012 году в журнале Science вышла статья ученых из Медицинского института Говарда Хьюза, в которой было показано, что один из белков бактериальной CRISPR-системы (белок Casp) умеет разрезать молекулы ДНК в строго определенных местах[316]. Для этого достаточно предоставить ему специально подобранные направляющие РНК. Год спустя все та же группа исследователей опубликовала статью под названием «РНК-программируемое редактирование генома клеток человека»[317]. Оказалось, что белок Casp может работать и в клетках человека, если вместе с геном белка Casp внедрить в них ген, кодирующий направляющую РНК к какой-нибудь последовательности человеческой ДНК. Параллельно другая группа исследователей генетически модифицировала мышей с помощью Casp[318]. Но самое интересное было дальше.

Рассмотрим организм, у которого на одной из хромосом возникла новая мутация. Каждому потомку организма передается только одна родительская хромосома из пары, поэтому, если скрестить организм с мутацией (на одной хромосоме) и организм без мутации, половина их потомков унаследует генетическое изменение, а половина не унаследует. Если скрестить полученных потомков, несущих мутацию, друг с другом, четверть особей следующего поколения будет иметь мутацию на обеих хромосомах, половина на одной, а четверть окажется вовсе без мутации. Несложно заметить, что это классическое наследование (по Менделю) не очень эффективно в передаче нового «мутантного» варианта потомкам.

Перейти на страницу:

Похожие книги