Читаем Суперсила полностью

Источник таких “трюков” – принцип неопределенности Гейзенберга, точнее его разновидность, относящаяся к энергии. В гл. 2 мы говорили о том, -что квантовые эффекты могут приостанавливать действие закона сохранения энергии на очень короткое время. В течение этого промежутка времени энергия может быть взята “взаймы” на различные цели, в том числе на рождение частиц. Разумеется, все возникающие при этом частицы будут короткоживущие, так как израсходованная на них энергия должна быть возвращена спустя ничтожную долю секунды. Тем не менее частицы могут возникнуть из ничего, обретя мимолетное бытие, прежде чем снова исчезнуть. И эту скоротечную деятельность невозможно предотвратить. Как бы мы ни старались опустошить пространство, в нем всегда будет присутствовать рой мимолетных частиц, возникновение которых “субсидируется” соотношением Гейзенберга. Эти частицы-призраки нельзя наблюдать, хотя они могут оставить следы своего кратковременного существования. Они представляют собой разновидность “виртуальных” частиц, аналогичных переносчикам взаимодействий, но не предназначенных для получения или передачи сигналов. Возникнув из пустоты, они снова превращаются в нее, являя собой наглядное доказательство существования силового поля и оставаясь при этом бесплотными призраками.

То, что казалось пустым пространством, в действительности кишит виртуальными частицами. Вакуум не безжизнен и безлик, а полон энергии. “Реальную” частицу, например электрон, всегда необходимо рассматривать на фоне этой непрерывной активности. Перемещаясь в пространстве, электрон в действительности оказывается в окружности частиц-призраков – виртуальных лептонов, кварков и переносчиков взаимодействий, – плутая в этой неразберихе. Своим присутствием он вносит возмущение в непрерывную активность вакуума, которая в свою очередь оказывает воздействие на электрон. Даже в состоянии покоя электрон не знает покоя: со всех сторон его непрерывно штурмуют другие частицы, появившиеся из вакуума.

Если два электрона обмениваются фотоном, то это не что иное, как дополнительное возмущение в существовавшей ранее системе обменов. Описание взаимодействия частиц должно учитывать все эти дополнительные виртуальные кванты. В присутствии силовых полей полное состояние данной частицы включает процессы обмена двумя, тремя или большим числом частиц-посредников, которые взаимодействуют с частицами вакуума так, что исходная частица и частицы-посредники оказываются буквально облеплены виртуальными частицами. Происходит бесконечное количество взаимодействий, причем все в одно и то же мгновение.

На рис. 14 изображен сравнительно простой пример одного из процессов высокого порядка. Одна из частиц испускает виртуальный фотон, который затем порождает электрон-позитронную пару. Частицы этой пары в свою очередь обмениваются другим виртуальным фотоном, а затем аннигилируют, образую еще один виртуальный фотон, который поглощается второй частицей. Эта диаграмма может быть лишь частью еще более сложной диаграммы, в которой две исходные частицы существуют лишь в течение какого-то промежутка времени, после чего превращаются еще во что-нибудь.

Графическое изображение взаимодействия всех частиц имеет вид паутины со сложными переплетениями, отражающими многочисленные обмены между виртуальными частицами различных сортов. Силовое поле никогда не бывает статическим. В нем всегда присутствуют частицы-призраки, снующие туда-сюда, возникающие и исчезающие, вплетенные в трепещущую ткань энергии.

На первый взгляд кажется, что бесконечная сложность всего происходящего исключает всякую надежду на понимание характера взаимодействий между реальными частицами, не говоря уже о возможности вычислений. К счастью, это впечатление обманчиво. Оказывается – во всяком случае в КЭД, – что по мере усложнения процессов их влияние на реальные частицы ослабевает. В рассмотренном примере рассеяния электрона на электроне основной вклад обусловлен обменом одним фотоном. Остальные процессы приводят лишь к небольшим поправкам. Обычно при вычислениях, если не требуется необыкновенно высокая точность, редко приходится учитывать вклад более чем трех-четырех простейших диаграмм.

Перейти на страницу:

Похожие книги

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное