Читаем Суперсила полностью

Бесконечная величина энергии поля точечного электрона, казалось бы, наносит смертельный удар теории ноля: если бы электрон обладал бесконечной энергией, то он был бы бесконечно тяжелым, что абсурдно. Теоретики оказались перед выборам:

либо отказаться от представления о точечном электроне, либо найти выход из тупика. И выход действительно был найден, хотя некоторые сочли его чем-то вроде жульничества. Он известен ныне как “перенормировка”.

Представим себе, что мы как-то исхитрились “выключать” заряд электрона С исчезновением заряда исчезнет и создаваемое им поле, и соответствующая электрическая энергия. То, что при этом осталось, уместно назвать “голым” электроном, с которого сорвано окутывающее его электромагнитное поле. Какова же масса “голого” электрона? Наблюдаемая масса реального электрона состоит как бы из двух частей – массы “голого” электрона и массы, соответствующей энергии электрического поля. Трудность заключается в том, что масса, соответствующая энергии электрического поля, при вычислении оказывается бесконечной. Такой результат был бы бессмысленным, если бы мы действительно могли “выключить” электрический заряд электрона, поскольку ни одна физическая -величина не может получать бесконечно большое приращение. Но заряд электрона нельзя выключить. Наблюдая электрон, мы воспринимаем его в целом: и поле, и все остальное. Наблюдаемая масса, разумеется, конечна. Так стоит ли всерьез беспокоиться, если вычисления показывают, что неотделимая часть массы электрона обращается в бесконечность?

Некоторых это действительно беспокоит, но не слишком серьезно. Возникновение в уравнениях теории бесконечных членов – своего рода предупреждение о том, что не все в порядке, но если бесконечности не появляются в наблюдаемых величинах, то их можно просто игнорировать и продолжить вычисления. При этом необходимо изгнать бесконечности из формул, чтобы продолжить пользоваться ими. Для этого теоретик просто смещает, “перенормирует”, нулевую точку на шкале измерения масс, сдвигая ее на бесконечно большую величину. В какой-то степени это похоже на договоренность отсчитывать высоту полета самолета не от уровня моря, а от уровня земной поверхности, только в случае электрона такое смещение имеет бесконечную величину. При этом теоретик ссылается на то, что положение нуля несущественно, поскольку на шкале масс нет выделенного начала отсчета; любой сдвиг – даже на бесконечно большую величину – в нашей власти и ненаблюдаем в реальном, физическом мире.

Благодаря этому хитроумному приему из описания электрона удается исключить бесконечные члены, которые поначалу грозили низвести теорию до абсурда. Однако на этом неприятности, связанные с квантовым описанием точечного электрона, не кончились. Возникла проблема, связанная с природой виртуальных фотонов.

Как мы уже знаем, каждый электрон окружен облаком трепещущей энергии, которое содержит множество всевозможных виртуальных частиц. Рассмотрим подробнее, как возникает это облако. Первоначально виртуальные фотоны были введены, чтобы дать квантовое описание того, как один электрон сигнализирует другому, что собирается воздействовать на него. Однако изолированный электрон может воздействовать с помощью виртуальных фотонов и на самого себя. В классической теории подобное самодействие также существует и приводит к возникновению бесконечных членов в уравнениях, описывающих поведение точечного электрона. Квантовое описание самодействия, образно говоря, означает, что электрон посылает фотоны самому себе. Диаграмма, изображающая это самодействие, изображена на рис.15; На ней показано, как испущенный электроном виртуальный фотон после непродолжительного путешествия в пространстве, возвращается назад и поглощается тем же электроном. Представление о подобном “круговороте” фотона может вызвать удивление. Но не следует забывать, что основанные на здравом смысле представления не имеют силы в квантовом мире, где крушение привычных устоев вполне обычно.



Рис.15 Заряженная частица испускает, а затем поглощает виртуальную частицу. Подобные процессы приводят к самодействию (т.е. взаимодействию частицы с самой собой), которое наделяет заряженную частицу собственной энергией. Суммарная величина энергии, соответствующей таким петлям, обращается в бесконечность.



Перейти на страницу:

Похожие книги

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное