Читаем Суперсила полностью

В гл. 4 мы говорили о том, как эстетическое чутье влияет на развитие науки. Среди наиболее впечатляющих примеров роли эстетического начала – применение в фундаментальной физике симметрии в достаточно общем смысле. Действительно, в последние годы “симметрийная лихорадка” завладела умами в ряде областей физики. Теперь уже ни у кого не вызывает сомнения, что именно симметрия служит ключом к пониманию природы взаимодействий. По убеждению физиков, все взаимодействия существуют лишь для того, чтобы поддерживать в природе некий набор абстрактных симметрий.

Какое отношение имеет взаимодействие, или сила, к симметрии? Само предположение о существовании подобной связи кажется парадоксальным и непонятным. Сила – это то, что действует на вещество или изменяет природу частиц. Симметрия – понятие, связанное с гармонией и соразмерностью форм.

Для ответа на поставленный вопрос уточним прежде всего, что понимается под симметрией. Обычно считается, что предмет обладает симметрией, если он остается неизменным в результате той или иной проделанной над ним операции. Сфера симметрична, потому что выглядит одинаково при повороте на любой угол относительно ее центра. Арка собора симметрична, поскольку не меняет своего вида при перестановке правого и левого относительно вертикальной оси. Законы электричества симметричны относительно замены положительных зарядов отрицательными и наоборот. Число примеров можно легко увеличить.

Симметрии, на которых основан пересмотр нашего понимания четырех фундаментальных взаимодействий, совершенно особого рода. Это так называемые калибровочные симметрии. Некоторые простые примеры проявления этих абстрактных симметрий, например инвариантность законов механики относительно изменения отсчета (нулевого уровня) высоты, были приведены в гл. 4. Калибровочные симметрии связаны с идеей калибровки путем изменения отсчета уровня, масштаба или значения физической величины. Система обладает калибровочной симметрией, если ее природа остается неизменной при такого рода преобразовании. Попытаемся на простом примере разобраться, как абстрактное понятие калибровочного преобразования можно связать с более конкретным представлением о физической силе.

Представьте себе, что вы находитесь на борту космического корабля, летящего равномерно и прямолинейно в мировом пространстве вдали от планет и других небесных тел. Вы не ощущаете ни действия каких-либо сил, ни самого движения. Вы пребываете в состоянии полной невесомости и свободно парите в кабине. Вообразить такую картину не составляет особого труда.

Теперь подвергнем этот сценарий калибровочному преобразованию. Иначе говоря, попытаемся изменить описание путем калибровочного преобразования, т.е. изменения масштаба, некоторой величины, в данном случае – расстояния. Предположим, что космический корабль по-прежнему движется в пространстве с постоянной скоростью, но уже по траектории, проходящей параллельно предыдущей на расстоянии 1 км от нее. Что означало бы такое калибровочное преобразование для пассажира космического корабля? Ровно ничего, если говорить о силах. Пассажир испытывал бы те же ощущения, что и в предыдущем сценарии. Точнее, поведение физических объектов вокруг пассажира абсолютно не зависит от того, по какой прямолинейной траектории движется корабль. Ясно, что в этом примере проявляется некая симметрия. Ее можно выразить утверждением, что законы физики инвариантны (т.е. неизменны) относительно параллельного переноса (или сдвига) при калибровке расстояния. Но пока силы по-настоящему не участвовали в нашем рассмотрении.

При калибровочном преобразовании траектория космического корабля оставалась прямолинейной. Пространственный сдвиг был одинаков у всех точек траектории. Иначе говоря, калибровочное преобразование было всюду одинаковым – подобное преобразование физики называют “глобальным” калибровочным преобразованием Глобальный характер важен: если бы калибровочное преобразование непрерывно изменялось вдоль траектории космического корабля, то преобразованная траектория представляла бы собой извилистую линию. У космического корабля, запрограммированного для полета по такой траектории, должны были бы непрерывно работать двигатели, а пассажира при каждом маневре бросало бы из стороны в сторону. Он испытывал бы действие сил. Маневрирование сказалось бы на поведении всех физических объектов внутри корабля. Калибровочные преобразования, изменяющиеся от точки к точке, известны под названием “локальных” калибровочных преобразований. Совершенно очевидно, что законы физики не инвариантны относительно локальных калибровочных преобразований, искривляющих траекторию космического корабля и причиняющих пассажиру столько неприятностей. А может быть, они все же инвариантны?

Перейти на страницу:

Похожие книги

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное