Читаем Сущность технологии СОМ. Библиотека программиста полностью

Как показано на рис. 7.5, при передаче открытого массива маршалер сначала выяснит длину массива, а затем смещение и длину его фактического содержимого. Как и в случае переменного массива, длина массива может быть больше, чем количество передаваемых элементов. Это означает, что содержимое передаваемого буфера не может быть передано непосредственно вызывающей программе, поэтому используется второй блок памяти, что увеличивает расход памяти.

Совместимые массивы являются самым полезным типом массивов для входных параметров. Открытые массивы наиболее полезны для выходных или входных/выходных параметров, поскольку они позволяют вызывающей программе выделять буфер произвольного размера, несмотря на то, что передаваться будет только необходимое в каждом случае количество элементов. IDL для обеспечения использования этих типов выглядит следующим образом:

HRESULT Method16([in] long cMax,

[out] long *pcActual,

[out, size_is(cMax), length_is(*pcActual)] short *rgs);

из чего следует такое использование со стороны клиента:

void f(IFoo *pFoo)

{

short rgs[8];

long cActual;

pFoo->Method16(8, &cActual, rgs);

// .. process first cActual elements of rgs

// .. обрабатываем первые cActual элементов из массива rgs

}

в то время как реализация со стороны сервера выглядит примерно так:

HRESULT CFoo::Method16(long cMax,

long *pcActual,

short *rgs)

{

*pcActual = min(cMax,5);

// only write 1st 5 elems

// записываем только первые пять элементов

for (long n = 0; n < *pcActual; n++)

rgs[n] = n * n;

return S_OK;

}

Это позволяет вызывающей программе контролировать задание размеров буфера, а реализация метода контролирует фактическое количество переданных элементов.

Если открытый массив будет использоваться в качестве входного/выходного параметра, то следует указать переменную длину массива в каждом направлении. Если число элементов на входе может отличаться от числа элементов на выходе, то параметр переменной длины тоже должен иметь входной/выходной тип:

HRESULT Method17([in] long cMax,

[in, out] long *pcActual,

[in, out, size_is(cMax), length_is(*pcActual)] short *rgs);

что предполагает следующий код на стороне клиента:

void f(IFoo *pFoo)

{

short rgs[8];

rgs[0] = 0; rgs[1] = 1;

long cActual = 2;

pFoo->Method17(8, &cActual, rgs);

// .. process first cActual elements of rgs

// .. обрабатываем первые cActual элементов из массива rgs

}

Если число элементов на входе и на выходе одно и то же, то подойдет совместимый массив:

HRESULT Method18([in] long cElems,

[in, out, size_is(cElems)] short *rgs);

Данный метод использует эффективность совместимого массива, и его гораздо проще использовать.

Приведенные выше примеры оперировали с одномерными массивами. Рассмотрим следующий прототип на С:

void g(short **arg1);

Этот прототип может означать в С все, что угодно. Возможно, функция ожидает указатель на одно короткое целое число:

void g(short **arg1) {

// return ptr to static

// возвращаем указатель на static

static short s;

*arg1 = &s

}

Или, возможно, функция ожидает массив из 100 коротких указателей:

void g(short **arg1)

{

// square 100 shorts by ref

// квадрат из 100 коротких целых указателей

for (int n = 0; n < 100; n++)

*(arg1[n]) *= *(arg1[n]);

}

А также, возможно, функция ожидает указатель на указатель на массив коротких целых:

void g(short **arg1)

{

// square 100 shorts

// квадрат из 100 коротких целых

for (int n = 0; n < 100; n++)

(*arg1)[n] *= (*arg1)[n];

}

Этот синтаксический кошмар разрешается в IDL использованием такого синтаксиса, который часто побуждает пользователей-новичков бежать за утешением к документации.

Атрибуты IDL [size_is] и [lengtn_is] принимают переменное количество разделенных запятой аргументов, по одному на каждый уровень косвенности. Если параметр пропущен, то считается, что соответствующий уровень косвенности является указателем на экземпляр, а не на массив. Для того чтобы показать, что параметр является указателем на указатель на одиночный экземпляр, не требуется более никаких атрибутов:

HRESULT Method19([in] short **pps);

что означает такое расположение в памяти:

pps -> *pps-> **pps

Для того чтобы показать, что параметр является указателем на массив указателей на экземпляры, нужно написать следующий код IDL:

HRESULT Method20([in, size_is(3)] short **rgps);

что в памяти будет выглядеть примерно так:

rgps -> rgps[0] -> *rgps[0]

rgps[1] -> *rgps[1]

rgps[2] -> *rgps[2]

Для того чтобы показать, что параметр является указателем на указатель на массив экземпляров, следует написать такой код на IDL:

HRESULT Method21([in, size_is(,4)] short **pprgs);

что в памяти будет выглядеть следующим образом:

pprgs -> pprgs -> (pprgs)[0]

(pprgs)[1]

(pprgs)[2]

(pprgs)[3]

Для того чтобы показать, что параметр является массивом указателей на массивы экземпляров, нужно написать следующее:

HRESULT Method22([in, size_is(3,4)] short **rgrgs);

что в памяти будет выглядеть примерно так:

rgrgs -> rgrgs[0] -> rgrgs[0][0]

rgrgs[0][1]

rgrgs[0][2]

rgrgs[0][3]

rgrgs[1] -> rgrgs[1][0]

rgrgs[1][1]

rgrgs[1][2]

rgrgs[1][3]

rgrgs[2] -> rgrgs[2][0]

rgrgs[2][1]

rgrgs[2][2]

rgrgs[2][3]

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Язык программирования Euphoria. Справочное руководство
Язык программирования Euphoria. Справочное руководство

Euphoria (юфо'ри, также рус. эйфори'я, ра'дость) — язык программирования, созданный Робертом Крейгом (Rapid Deployment Software) в Канаде, Торонто. Название Euphoria — это акроним для «End-User Programming with Hierarchical Objects for Robust Interpreted Applications».Euphoria — интерпретируемый императивный язык высокого уровня общего назначения. C помощью транслятора из исходного кода на Euphoria может быть сгенерирован исходный код на языке Си, который в свою очередь может быть скомпилирован в исполнияемый файл или динамическую библиотеку при помощи таких компиляторов, как GCC, OpenWatcom и др. Программа Euphoria также может быть «связана» с интерпретатором для получения самостоятельного исполняемого файла. Поддерживается несколько GUI-библиотек, включая Win32lib и оберток для wxWidgets, GTK+ и IUP. Euphoria имеет встроенную простую систему баз данных и обертки для работы с другими типам баз данных.[Материал из Википедии]

Коллектив авторов

Программирование, программы, базы данных