Читаем Сверхъестественное полностью

оценки эффективности. Например, для интервала t2= 120 мин мы получаем ожидаемое l =

13,341 μA и фактическое l = 13,258 μA.

Погрешность этого измерения складывается из нескольких факторов: систематической

погрешности измерения малых токов, изменения Δl, вызванного колебаниями температуры за

время t2 (их можно оценить по уровню флюктуации температуры), и случайные погрешности,

вызванные прочими факторами (например механическими воздействиями). В общем, мы

можем оценить систематическую погрешность на уровне <0,5% и случайную погрешность

на уровне 0,1%.

Жидкостные сенсоры: высокочастотная кондуктометрия

Этот тип сенсоров также измеряет проводимость измерительной жидкости, однако

другим методом — с помощью высокочастотной неконтактной кондуктометрии. Основой

сенсорного эффекта являются процессы молекулярной и ориентационной поляризации

диполей воды в объёме жидкости [485; 486]. Используются два независимых LC-осциллятора

Колпитта (LC Colpitts oscillator) с высокочастотным, до 1 ГГц, транзистором в схеме с общим

коллектором. Осцилляторы настроены на частоты между 10 МГц и 30 МГц. Измерительные

жидкости встроены в конструкцию осцилляторов. Аналоговые части экранированы и

выполнены в отдельных блоках, цифровая часть выполнена на чипе PSoC 5 CV8C5588AXI-

060 с тактовой частотой 75 МГц (стабилизирована кварцевым резонатором). Изменения,

вызванные действием «высокопроникающего излучения», детектируются как изменения

частоты. Цифровая часть осуществляет функцию частотомера, аналого-цифрового

преобразователя для датчика температуры и поддерживает USB-интерфейс. Схема может

работать в режиме дифференциального датчика или же в режиме двух разночастотных

датчиков. Поскольку сенсор имеет только небольшую нелинейность при малых изменениях

температуры, считывание показаний происходит относительно линейной экстраполяции

динамики изменения частоты.

Рис. 92. Изменения частоты высокочастотного кондуктометрического сенсора во время

эксперимента со светодиодным генератором. Данные из работы [221]. Серой полосой

показано время действия генератора, расстояние между генераторами и детекторами 0,4

метра.

На рис. 92 показаны результаты тестов реакции индуктивного сенсора на воздействие

светодиодного генератора. Ожидаемые значения частот — 24,24561 МГц и 24,24573 МГц,

фактические значения частот 24,24553 МГц и 24,24565 МГц соответственно.

Систематическая погрешность этого метода зависит от двух факторов: а) качества

температурной изоляции датчиков и б) эффективности преобразования

«высокопроникающего излучения» в электрические параметры. Поскольку большой

статистики для фактора б) ещё нет, на основании повторных измерений с одним и тем же

источником излучения можно оценить эту погрешность на уровне <1%. Случайная

погрешность измерения частоты низкая, для чипа PSoC 5 находится на уровне 0,01%.

Жидкостные сенсоры: дифференциальная pH-метрия

Помимо кондуктометрических методов, другой класс методов анализа жидкостей, так

называемая потенциометрия, также хорошо подходит для измерения эффектов

«высокопроникающего» излучения.

В ряде источников [442; 487; 488] указывалось на изменение pH и окислительно-

восстановительного потенциала. Поскольку эти измерения являются классическими

средствами физико-химического анализа, был разработан специализированный прибор для

pH-измерений с «высокопроникающим» излучением.

Два полностью идентичных канала измерительной системы на основе модуля MU2.0

были сконфигурированы для единичного или дифференциального измерения pH. Благодаря

необычным характеристикам MU2.0 прибор в состояли измерять кислотно-основные

изменения в тестовых Жидкостях на уровне 10-5 — 10-7 pH, что недоступно для большинства

других приборов.

Основные области применения — долговременные лабораторные и полевые измерения

с малыми и сверхмалыми изменениями pH. Инженерный прототип прибора показан на рис.

93.

Рис. 93. Прецизионный дифференциальный USB-pH-метр на основе MU2.0 (инженерный

прототип).

Структура экспериментов показана на рис. 94. pH-электроды находятся в термостатах 1

и 2. Присутствуют 4 химически одинаковые жидкости в одинаковых контейнерах: 2

измерительные жидкости и 2 тестовые жидкости. Воздействие происходит на тестовую

жидкость, измерения производятся в измерительных жидкостях. Иными словами, происходят

Перейти на страницу:

Похожие книги

Человек 2050
Человек 2050

Эта книга расскажет о научных и социальных секретах – тайнах, которые на самом деле давно лежат на поверхности. Как в 1960-х годах заговор прервал социалистический эксперимент, находившийся на своём пике, и Россия начала разворот к архаичному и дикому капитализму? В чем ошибался Римский Клуб, и что можно противопоставить обществу "золотого миллиарда"? Каким должен быть человек будущего и каким он не сможет стать? Станет ли человек аватаром – мёртвой цифровой тенью своего былого величия или останется образом Бога, и что для этого нужно сделать? Наконец, насколько мы, люди, хорошо знаем окружающий мир, чтобы утверждать, что мы зашли в тупик?Эта книга должна воодушевить и заставить задуматься любого пытливого читателя.

Евгений Львович Именитов

Альтернативные науки и научные теории / Научно-популярная литература / Образование и наука
Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Я – странная петля
Я – странная петля

Где рождается личность? И как наши личности могут существовать в чужом сознании? Материальна ли мысль? Материальны ли личность, душа, сознание, «Я»? Если нет, то как мы можем находиться здесь? Дуглас Хофштадтер утверждает, что ключ к пониманию личности – «странная петля», абстрактная замкнутая сущность особого рода, содержащаяся в мозге.Главный и наиболее сложный символ – «Я». Это звено – один из многих символов, которые, как кажется, наделены свободной волей и обрели парадоксальную способность направлять частицы в мозге. Так как загадочная абстракция может быть реальной? Или «Я» – сподручная фикция? Обладает ли «Я» властью над прочими частицами или само послушно вторит законам физики?Над этими загадками бьется автор, впервые после своего magnum opus предпринявший оригинальное философское расследование сущности человеческого разума.

Дуглас Роберт Хофштадтер

Альтернативные науки и научные теории