Читаем Сверхзвуковые самолеты полностью

Описанное явление особенно характерно для современных самолетов с вертикальным оперением большой площади и крыльями малого удлинения, которые имеют малый продольный момент инерции. Очевидно, что противоположная реакция самолета на отклонение руля направления может быть связана также со сжимаемостью воздуха и возникновением кризисных явлений при несимметричном обтекании правой и левой консолей крыла, а также со специфическими формами сверхзвуковых самолетов и их меньшим моментом инерции относительно продольной оси. Эффект реверса руля направления может проявляться в диапазоне не только околозвуковых, но также и сверхзвуковых скоростей, особенно при М › l,5-2,0.

1* Обратное действие (реверс) элеронов проявляется в отклонении самолета в сторону, противоположную заданной пилотом. Реверс связан с упругостью конструкции и возникает при определенной (для данного типа самолета) скорости.

Развитие аэродинамических систем управления

Большое число и разнообразие явлений, ведущих к ухудшению устойчивости и управляемости в диапазоне сверхкритических скоростей, а также отсутствие эффективных средств противодействия им в первых около- и сверхзвуковых самолетах сделали полеты очень сложными и потребовали от пилотов исключительно осторожного управления. Практическое использование таких самолетов было невозможным, так как выполнение полета требовало концентрации всего внимания пилота.

Утрата эффективности управления в диапазоне сверхкритических скоростей-крайне опасное явление, требующее энергичного противодействия со стороны конструктора самолета. Если самолет имеет двигательную установку с достаточно большой тягой, то при разгоне он может относительно быстро преодолеть интервал околозвуковых скоростей, и поэтому некоторые из вышеописанных эффектов проявляются в течение такого короткого времени, что это не влияет на поведение самолета. Однако требование длительного полета современных самолетов на малой высоте с околозвуковыми скоростями вынуждает конструкторов разрабатывать различные аэродинамические и конструктивные способы обеспечения надлежащей управляемости во всем диапазоне эксплуатационных скоростей. Особенно стремятся к тому, чтобы снижение эффективности управления не совпадало по времени с нарушениями устойчивости, связанными с волновым кризисом на крыле в диапазоне околозвуковых скоростей.

В построенных до настоящего времени сверхзвуковых самолетах проблемы устойчивости разрешены различными способами, однако преимущественно посредством соответствующих комбинаций управляющих поверхностей: элеронов; элевонов; управляемого дифференциального стабилизатора; элеронов и рулей высоты, размещенных в хвостовых частях крыла; зависающих элеронов; интерцепторов; рулей высоты и направления либо цельнопово- ротного горизонтального и вертикального оперения, которое в самолетах вертикального взлета и посадки (как исключение, и в высотном самолете Х-15А) дополнено системой струйного (реактивного) управления.

Как следует из данных, содержащихся в табл. 1, в 37 самолетах для поперечного управления использованы элероны; в 7-элероны и интерцепторы; в 3-элероны и дифференциальный управляемый стабилизатор; в 8-интерцепторы и дифференциальный управляемый стабилизатор; в 5-только дифференциальный управляемый стабилизатор; в 19-элевоны; в 6-элероны и рули высоты в хвостовой части крыла; в 1-зависающие элероны и дифференциальный управляемый стабилизатор и в 2-только интерцепторы. Для управления по тангажу и курсу в 6 самолетах использовано классическое горизонтальное оперение, состоящее из неподвижного стабилизатора и руля высоты; в 56-полностью поворотное горизонтальное оперение, в том числе в 17-дифференциальное (всего создано 62 самолета классической схемы); в 75-классическое одно- килевое оперение; в 6-двухкилевое оперение; в 5-полностью поворотное одно килевое и в 2-поворотное двухкилевое.

Приведенные данные показывают, что проблема управления самолетами разрешалась разными способами в зависимости от принятой общей концепции самолета, развития аэродинамики и имеющегося опыта. В то же время возможности использования различных методов в целях получения требуемой устойчивости весьма ограничены. Помимо соответствующего взаимного расположения несущих поверхностей различной формы и площади, улучшения продольной устойчивости можно добиться только путем регулирования положения центра тяжести самолета посредством перекачки топлива из передней части фюзеляжа к хвостовой (либо наоборот), а улучшения устойчивости по курсу- посредством применения подфюзеляжных килей и аэродинамических направляющих.

Топливная система, позволяющая изменять балансировку самолета в полете, использована в 4 самолетах, а подфюзе- ляжные кили-в 26 (в том числе: в 15-одиночные, в 10-сдвоенные и в 1-строенные).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже