Читаем Сверхзвуковые самолеты полностью

Интересным примером такого взаимодействия могут служить интерцепторы в самолете МиГ-19, размещенные на нижней поверхности крыла. Они выполнены в виде уголковой конструкции, подвешенной на двух кронштейнах и выдвигаемой из крыла. Интерцептор выдвигается на толщину пограничного слоя только на той консоли, где элерон отклоняется книзу. Это вызывает торможение потока и увеличение подъемной силы, повышая тем самым эффективность управления.

Эффективность действия элеронов на треугольном крыле достаточно высока. Благодаря большому углу стреловидности, малому удлинению и тонкому профилю волновой кризис возникает здесь при больших скоростях и проявляется в смягченной форме, из-за чего самолету почти не угрожает аэродинамическая блокировка элеронов. Кроме того, малое удлинение предотвращает срыв потока на концах крыла при больших углах атаки. Перемещение центра давления для треугольного крыла при переходе через скорость звука относительно мало. Это положительно влияет на устойчивость, и поэтому в таких самолетах часто обходятся без горизонтального оперения, монтируя руль высоты на задней кромке крыла (схема «бесхвостка»).

Поскольку задняя кромка в треугольном крыле обычно весьма коротка, то чаще всего функции элерона и руля высоты объединяются в одной управляющей плоскости, называемой элевоном. Таким образом, элевон служит как для продольного, так и для поперечного управления. При движении ручки управления вперед или назад оба элевона отклоняются соответственно вниз или вверх, действуя, таким образом, как руль высоты. Движение ручки управления в стороны вызывает дифференциальные отклонения, т. е. левый элевон отклоняется вверх, а правый-вниз, либо наоборот, т. е. элевоны работают как обычные элероны. Аналогичным образом работают также зависающие элероны (закрылки-элероны, флапероны), используемые как для поперечного управления, так и для улучшения несущих характеристик самолета, улучшения маневренности и уменьшения скорости взлета и посадки. Поперечное управление с помощью зависающих элеронов и интерцепторов используется на самолете F-16. Поперечное управление может осуществляться также посредством одного управляемого дифференциального стабилизатора («Тридан» II, Х-15A, TSR.2).

Следует отметить, что на многих современных самолетах со стреловидными или треугольными крыльями поперечная управляемость улучшается в результате установки крыла с отрицательным углом поперечного У. Однако существенного улучшения динамических характеристик сверхзвуковых самолетов при поперечном маневре получить посредством значительного увеличения отрицательного угла поперечного V не удается, так как это приводит либо к поперечной неустойчивости при больших скоростях полета, либо к возможности повреждения концов крыла о землю при взлете или посадке. С учетом этого в самолете TSR.2 применен отгиб концов крыла книзу (что позволяет схема высоко- плана с треугольным крылом малого размаха), а в самолете F-4-кверху. Поскольку в последнем случае устойчивость самолета оказалась слишком большой, горизонтальное оперение установлено с большим отрицательным углом поперечного V. При этом расстояние от концов крыла (или оперения) до земли оказывается вполне достаточным. Благодаря такому подходу (при одновременном использовании закрылков со сдувом пограничного слоя) для самолета F-4 оказались возможными взлет и посадка с большими углами атаки.


Рис. 1.33. Элементы аэродинамической системы управления самолета Х-15.

1 -управляемый дифференциальный стабилизатор; 2-поворотная часть киля; 3-отъемная нижняя часть подфюзеляжного киля; 4-тормозные щитки; 5-закрылки; 6-реактивные сопла поперечного управления; 7-реактивные сопла продольного управления; 8-реактивные сопла управления рысканием; 9-баллон сжатого воздуха; /0- рьгчаг подсистемы реактивного управления.


Ввиду необходимости применения вертикального оперения с тонкими профилями и большими углами стреловидности, а также из-за его аэродинамического затенения длинным фюзеляжем и крылом малого удлинения путевая устойчивость самолета существенно снижается при малых скоростях полета. Уменьшается она также и при больших сверхзвуковых скоростях по причине снижения эффективности вертикального оперения (из-за изменения распределения давления на профиле), а также вследствие дополнительного затенения, возникающего при полетах на больших высотах, выполняемых с большими углами атаки.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже