Читаем Сверточные нейросети полностью

Операция пулинга является важным шагом в сверточных нейронных сетях (CNN), предназначенным для снижения размерности карт признаков, полученных после операции свертки. Она помогает сохранить наиболее важную информацию, сокращая количество данных, что в свою очередь уменьшает вычислительную сложность и количество параметров модели.

Одним из наиболее распространенных видов операции пулинга является max-pooling, который выбирает максимальное значение в определенном окне или фильтре данных. Это позволяет выделить наиболее яркие признаки из каждой области изображения, сохраняя их важность для последующего анализа. Другой распространенный тип пулинга – average-pooling, который вычисляет среднее значение всех значений в окне. Этот метод также помогает сократить размерность данных, сохраняя общие характеристики.

Роль операции пулинга заключается не только в снижении размерности данных, но и в уменьшении количества параметров модели, что способствует борьбе с переобучением. Путем уменьшения количества параметров модель становится более обобщающей и способной к эффективной обработке новых данных. Таким образом, операция пулинга играет важную роль в сверточных нейронных сетях, обеспечивая баланс между вычислительной эффективностью и сохранением важных признаков.

Представим, у нас есть входные данные в виде двумерного массива, представляющего собой карту признаков после операции свертки:

```

[2, 1, 0, 2]

[1, 3, 1, 0]

[0, 1, 5, 4]

[1, 2, 3, 1]

```

Допустим, мы применяем операцию max-pooling с окном размером 2x2. Это означает, что мы будем скользить окном размером 2x2 по исходной карте признаков и выбирать максимальное значение из каждого окна.

Рассмотрим первое окно:

```

[2, 1]

[1, 3]

```

Максимальное значение здесь – 3.

Перемещаем окно на одну позицию вправо и выбираем максимальное значение:

```

[1, 0]

[1, 1]

```

Максимальное значение – 1.

Продолжаем этот процесс, пока не дойдем до конца карты признаков. Результат будет выглядеть следующим образом:

```

[3, 1]

[1, 5]

```

Это и будет результатом операции max-pooling для данной карты признаков с окном размером 2x2. Таким образом, мы уменьшили размерность данных, сохраняя наиболее важные признаки.

4. Нормализация (Normalization):

–Нормализация играет важную роль в обучении глубоких нейронных сетей, помогая ускорить сходимость и стабилизировать процесс оптимизации. Одним из основных методов нормализации является Batch Normalization, представленный в 2015 году. Этот метод заключается в нормализации входов для каждого мини-батча данных в процессе обучения. После каждого слоя в сети данные нормализуются по среднему и дисперсии мини-батча, что способствует улучшению производительности модели и позволяет использовать более высокие темпы обучения.

Еще одним вариантом нормализации является Layer Normalization, который, в отличие от Batch Normalization, работает на уровне отдельных слоев, а не мини-батчей. Это позволяет модели быть более устойчивой к изменениям в данных и позволяет применять нормализацию даже в случае использования одиночных примеров. Кроме того, существуют и другие варианты нормализации, такие как Instance Normalization, которая работает на уровне отдельных экземпляров, и Group Normalization, которая разделяет каналы входных данных на группы и нормализует каждую группу независимо.

Нормализация играет важную роль в обучении глубоких нейронных сетей, обеспечивая стабильность и ускоряя сходимость процесса обучения. Выбор конкретного метода нормализации зависит от особенностей задачи и архитектуры сети, однако в любом случае эти методы помогают модели эффективно учиться на данных и делать более точные прогнозы.

Допустим, у нас есть сверточная нейронная сеть для классификации изображений. После каждого сверточного слоя мы применяем операцию Batch Normalization для нормализации активаций перед передачей их на следующий слой. Это помогает ускорить обучение и стабилизировать процесс оптимизации.

Процесс нормализации включает вычисление среднего значения и дисперсии активаций в каждом мини-батче данных. Допустим, у нас есть мини-батч изображений размером 32x32x3 (32 пикселя в ширину, 32 пикселя в высоту и 3 канала для цветов RGB). После применения сверточного слоя, мы получаем активации размером 32x32x64 (где 64 – количество фильтров).

Для каждого канала активации мы вычисляем среднее значение и дисперсию по всему мини-батчу. Затем мы используем эти значения для нормализации активаций. Например, если среднее значение для определенного канала составляет 0.5, а дисперсия – 1.5, то мы вычитаем 0.5 из каждого элемента активации и делим на корень из 1.5. Это приводит к тому, что активации становятся центрированными вокруг нуля и имеют стандартное отклонение, близкое к 1.

Этот процесс повторяется для каждого мини-батча в процессе обучения, что позволяет сети более стабильно обучаться на различных данных и делать более точные прогнозы.

Пример использования Batch Normalization в сверточной нейронной сети с использованием библиотеки PyTorch:

```python

import torch

import torch.nn as nn

import torch.nn.functional as F

Перейти на страницу:

Похожие книги

Об интеллекте
Об интеллекте

В книге "Об интеллекте" Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему "память-предсказание" как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге "Об интеллекте", лягут в основу создания истинного искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Джеф Хокинс , Сандра Блейксли , Сандра Блэйксли

Технические науки / Прочая компьютерная литература / Образование и наука / Книги по IT / Зарубежная компьютерная, околокомпьютерная литература
Тайны и секреты компьютера
Тайны и секреты компьютера

Эта книга предназначена для тех, кто самостоятельно осваивает мир информационных технологий. Программирование в среде Microsoft Office, устройство сетей Internet и Fidonet, работа системы электронной почты, структура системного реестра Windows и файловой системы, строение жидкокристаллических дисплеев и проблема наличия различных кодировок русского языка, — про все это рассказывается в ней. Многообразие тем и легкий стиль изложения сделают ее вашим спутником на долгое время, и вы всегда сможете найти в ней нужную именно в данный момент информацию.Если Вы интересуетесь компьютерными технологиями, желали бы расширить свои знания и умения в этой области, то она Вам наверняка понравится.http://comptain.nm.ru

Антон Александрович Орлов , Антон Орлов

Фантастика / Зарубежная компьютерная, околокомпьютерная литература / Фэнтези / Прочая компьютерная литература / Книги по IT
Фотоприколы с помощью Photoshop
Фотоприколы с помощью Photoshop

Книга в доступной и юмористической форме раскроет перед вами волшебный мир компьютерной графики. В первой (теоретической) части вы познакомитесь с основными понятиями цифровой графики, интерфейсом программы Photoshop и принципами ее работы. Вторая (практическая) часть, представленная в виде забавных примеров, весело и непринужденно поможет вам научиться выполнять различные трюки с фотографиями. Вы узнаете, как изменить внешний вид президента, сделать утюг водоплавающим, заставить футболиста летать и многое другое, а заодно изучите богатую палитру инструментов Photoshop. С этой веселой книгой, снабженной забавными иллюстрациями, проблемы с Photoshop покажутся вам просто смешными.

Геннадий Геннадьевич Кондратьев , Юрий Анатольевич Гурский

Программирование, программы, базы данных / Прочая компьютерная литература / Книги по IT