Читаем Сверточные нейросети полностью

Функция активации Sigmoid была одной из первых функций, широко используемых в нейронных сетях, особенно в ранних моделях искусственных нейронных сетей. Sigmoid преобразует любое входное значение в диапазон от 0 до 1, что делает ее особенно полезной для задач, где требуется интерпретация вывода как вероятности. Именно по этой причине Sigmoid часто используется в выходных слоях нейронных сетей для задач бинарной классификации, где выходная величина должна представлять вероятность принадлежности к одному из двух классов.

Одним из основных преимуществ Sigmoid является ее плавный градиент, что означает, что небольшие изменения входных значений приводят к небольшим изменениям в выходных значениях. Это позволяет нейронным сетям чувствительно реагировать на изменения входных данных и, в некоторой степени, помогает в стабильном обучении. Кроме того, функция Sigmoid является дифференцируемой, что важно для процесса обратного распространения ошибки, используемого для обучения нейронных сетей.

Однако у функции Sigmoid есть и существенные недостатки. Один из самых значительных – это проблема затухающих градиентов. Когда входные значения становятся очень большими по модулю, производная Sigmoid становится близкой к нулю, что замедляет или останавливает процесс обновления весов во время обучения. Это приводит к медленной сходимости или даже к стагнации обучения, особенно в глубоких сетях. В результате нейронные сети, использующие Sigmoid, могут потребовать значительно больше времени для обучения или вообще не достигать хороших результатов.

Еще одним недостатком Sigmoid является ее асимптотическое поведение: для очень больших положительных или отрицательных значений входа выход функции становится близким к 1 или 0 соответственно, но никогда не достигает этих значений. Это может привести к ситуации, когда нейроны находятся в насыщенной области, где они практически не обучаются. Это особенно проблематично для глубоких нейронных сетей, где многослойное применение Sigmoid может усугублять проблему затухающих градиентов.

Несмотря на свои недостатки, функция активации Sigmoid все еще находит применение в современных нейронных сетях, особенно в тех случаях, когда требуется интерпретация выходных значений как вероятностей. Тем не менее, для большинства задач глубокого обучения предпочтение отдается другим функциям активации, таким как ReLU и его вариации, которые лучше справляются с проблемой затухающих градиентов и способствуют более быстрой сходимости моделей.

Пример использования Sigmoid

Рассмотрим пример использования функции активации Sigmoid в нейронной сети, реализованной с помощью библиотеки Keras на Python. В этом примере мы создадим простую нейронную сеть для задачи бинарной классификации на наборе данных Pima Indians Diabetes.

```python

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

from keras.datasets import mnist

from keras.utils import np_utils

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

# Загрузка данных Pima Indians Diabetes

from sklearn.datasets import load_diabetes

data = load_diabetes

X = data.data

y = (data.target > data.target.mean).astype(int) # Бинаризация целевой переменной

# Разделение данных на тренировочную и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Нормализация данных

scaler = StandardScaler

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

# Создание модели

model = Sequential

# Добавление слоев с функцией активации Sigmoid

model.add(Dense(12, input_dim=X_train.shape[1], activation='sigmoid')) # Первый полносвязный слой с Sigmoid

model.add(Dense(8, activation='sigmoid')) # Второй полносвязный слой с Sigmoid

model.add(Dense(1, activation='sigmoid')) # Выходной слой с Sigmoid для бинарной классификации

# Компиляция модели

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# Обучение модели

model.fit(X_train, y_train, epochs=150, batch_size=10, validation_split=0.2)

# Оценка модели на тестовых данных

score = model.evaluate(X_test, y_test)

print(f'Test loss: {score[0]}')

print(f'Test accuracy: {score[1]}')

```

Пояснение

1. Загрузка данных Pima Indians Diabetes:

Мы используем набор данных Pima Indians Diabetes, который содержит различные медицинские показатели, чтобы предсказать, есть ли у пациента диабет (бинарная классификация). В этом примере мы создаем бинарную метку на основе того, превышает ли целевая переменная среднее значение.

2. Разделение данных:

Мы делим данные на тренировочные и тестовые выборки в соотношении 80% на 20%.

3. Нормализация данных:

Мы нормализуем данные с использованием `StandardScaler` для улучшения производительности модели.

4. Создание модели:

Мы создаем последовательную модель (Sequential) и добавляем слои:

– Первый слой содержит 12 нейронов и использует функцию активации Sigmoid. Размер входного слоя соответствует числу признаков в данных.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии