Читаем Сверточные нейросети полностью

transforms.Normalize((0.5,), (0.5,))

])

train_set = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

# Определение архитектуры нейронной сети

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__

self.fc1 = nn.Linear(28*28, 128)

self.fc2 = nn.Linear(128, 64)

self.fc3 = nn.Linear(64, 10)

def forward(self, x):

x = torch.flatten(x, 1)

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

x = self.fc3(x)

return x

# Создание экземпляра модели

model = SimpleNN

# Определение функции потерь и оптимизатора

criterion = nn.CrossEntropyLoss

optimizer = optim.Adam(model.parameters, lr=0.001)

# Обучение модели

num_epochs = 5

for epoch in range(num_epochs):

running_loss = 0.0

for i, data in enumerate(train_loader, 0):

inputs, labels = data

optimizer.zero_grad

outputs = model(inputs)

loss = criterion(outputs, labels)

loss.backward

optimizer.step

running_loss += loss.item

if (i+1) % 100 == 0:

print(f'Epoch {epoch+1}, Iteration {i+1}, Loss: {running_loss/100:.4f}')

running_loss = 0.0

print('Finished Training')

# Сохранение модели

torch.save(model.state_dict, 'mnist_model.pth')

```

Этот код создает и обучает простую полносвязную нейронную сеть для классификации изображений MNIST. В ней используются три полносвязных слоя, функции активации ReLU и функция потерь CrossEntropyLoss. Модель обучается в течение нескольких эпох с использованием оптимизатора Adam. По завершении обучения модель сохраняется в файл ‘mnist_model.pth'.


Функции активации

Функции активации играют важную роль в работе нейронных сетей, добавляя нелинейность в модель и позволяя ей учить сложные зависимости в данных. Вот более подробное описание основных функций активации:

1. ReLU (Rectified Linear Unit): Это одна из самых популярных функций активации, которая заменяет все отрицательные значения на ноль, оставляя положительные значения без изменений. Это делает вычисления проще и ускоряет обучение модели. ReLU также помогает в предотвращении проблемы затухания градиента.

Пример использования ReLU в нейронной сети может быть следующим:

Допустим, у нас есть простая нейронная сеть для классификации изображений рукописных цифр. В этой сети мы можем использовать ReLU в качестве функции активации для скрытых слоев. Вот как это может выглядеть на практике:

```python

import torch

import torch.nn as nn

import torchvision.transforms as transforms

import torchvision.datasets as datasets

# Загрузка данных MNIST и предобработка

transform = transforms.Compose([

transforms.ToTensor,

transforms.Normalize((0.5,), (0.5,))

])

train_set = datasets.MNIST(root='./data', train=True, download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

# Определение архитектуры нейронной сети с ReLU в скрытых слоях

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__

self.fc1 = nn.Linear(28*28, 128)

self.fc2 = nn.Linear(128, 64)

self.fc3 = nn.Linear(64, 10)

self.relu = nn.ReLU

def forward(self, x):

x = torch.flatten(x, 1)

x = self.relu(self.fc1(x))

x = self.relu(self.fc2(x))

x = self.fc3(x)

return x

# Создание экземпляра модели

model = SimpleNN

# Обучение модели и применение ReLU в скрытых слоях

```

В этом примере мы создаем нейронную сеть с тремя полносвязными слоями. После каждого полносвязного слоя мы применяем ReLU в качестве функции активации, чтобы добавить нелинейность и ускорить обучение модели. В итоге, мы используем ReLU для предотвращения затухания градиента и улучшения производительности нашей нейронной сети.

2. Sigmoid: Sigmoid-функция сжимает выходные значения в диапазон от 0 до 1, что делает её полезной для задач бинарной классификации, где нужно получить вероятность принадлежности к одному из двух классов. Однако у неё есть проблема затухания градиента, особенно при глубоких сетях.

Пример использования Sigmoid в нейронной сети для задачи бинарной классификации может быть следующим:

Допустим, у нас есть набор данных, содержащий изображения лиц, и мы хотим определить, принадлежит ли каждое лицо к классу "улыбающееся" или "неулыбающееся". В этом случае мы можем использовать нейронную сеть с одним выходным нейроном и функцией активации Sigmoid для предсказания вероятности улыбки.

```python

import torch

import torch.nn as nn

import torchvision.transforms as transforms

import torchvision.datasets as datasets

# Загрузка и предобработка данных

transform = transforms.Compose([

transforms.Resize((32, 32)),

transforms.ToTensor,

transforms.Normalize((0.5,), (0.5,))

])

train_set = datasets.ImageFolder(root='./data/train', transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

# Определение архитектуры нейронной сети с Sigmoid в выходном слое

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__

self.fc1 = nn.Linear(32*32*3, 128)

self.fc2 = nn.Linear(128, 64)

self.fc3 = nn.Linear(64, 1)

self.sigmoid = nn.Sigmoid

def forward(self, x):

x = torch.flatten(x, 1)

Перейти на страницу:

Похожие книги

Об интеллекте
Об интеллекте

В книге "Об интеллекте" Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему "память-предсказание" как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге "Об интеллекте", лягут в основу создания истинного искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Джеф Хокинс , Сандра Блейксли , Сандра Блэйксли

Технические науки / Прочая компьютерная литература / Образование и наука / Книги по IT / Зарубежная компьютерная, околокомпьютерная литература
Тайны и секреты компьютера
Тайны и секреты компьютера

Эта книга предназначена для тех, кто самостоятельно осваивает мир информационных технологий. Программирование в среде Microsoft Office, устройство сетей Internet и Fidonet, работа системы электронной почты, структура системного реестра Windows и файловой системы, строение жидкокристаллических дисплеев и проблема наличия различных кодировок русского языка, — про все это рассказывается в ней. Многообразие тем и легкий стиль изложения сделают ее вашим спутником на долгое время, и вы всегда сможете найти в ней нужную именно в данный момент информацию.Если Вы интересуетесь компьютерными технологиями, желали бы расширить свои знания и умения в этой области, то она Вам наверняка понравится.http://comptain.nm.ru

Антон Александрович Орлов , Антон Орлов

Фантастика / Зарубежная компьютерная, околокомпьютерная литература / Фэнтези / Прочая компьютерная литература / Книги по IT
Где твоя волшебная кнопка? Как развивать эмоциональный интеллект
Где твоя волшебная кнопка? Как развивать эмоциональный интеллект

Понимание эмоций и управление эмоциями играют ведущую роль в нашей жизни и успешности. А влияние на эмоции коллег и партнеров определяет достижения в бизнесе. Эмоциональный интеллект начинает занимать лидирующее положение в ряду навыков, которыми должен обладать и которые развивает любой человек, стремящийся получить высокие результаты. В книге используется множество приемов, упражнений и заданий, применив которые вы сможете направить силу эмоций на достижение успеха в своих делах.Из книги вы узнаете:– почему интерес и страх – главные эмоции в жизни человека;– что в рекламе видят женщины, а что мужчины;– на какие эмоции опираются успешные люди;– как эмоции направляют финансовые потоки.Авторы книги утверждают, что в современном мире успешный человек должен уметь развивать и поддерживать свой эмоциональный интеллект. Книга предназначена для бизнес-тренеров, студентов старших курсов, а также заинтересованных лиц.

Елена Анатольевна Хлевная , Л. Южанинова

Психология и психотерапия / Прочая компьютерная литература / Книги по IT