Читаем Сверточные нейросети полностью

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

x = self.fc3(x)

x = self.sigmoid(x)

return x

# Создание экземпляра модели

model = SimpleNN

# Обучение модели и применение Sigmoid в выходном слое

```

В этом примере мы создаем нейронную сеть с тремя полносвязными слоями. После двух скрытых слоев мы применяем ReLU в качестве функции активации, а в выходном слое – Sigmoid. Это позволяет нам получить вероятность того, что каждое изображение принадлежит классу "улыбающееся" (значение близкое к 1) или "неулыбающееся" (значение близкое к 0). Однако важно помнить о проблеме затухания градиента при использовании Sigmoid, особенно в глубоких сетях, что может затруднить обучение модели.

3. Tanh (гиперболический тангенс): Тангенс гиперболический функция также сжимает выходные значения, но в диапазон от -1 до 1. Это помогает ускорить обучение по сравнению с сигмоидальной функцией, так как выходные значения более центрированы относительно нуля.

Пример использования Tanh (гиперболического тангенса) в нейронной сети для предсказания значения некоторого непрерывного признака:

```python

import torch

import torch.nn as nn

import torchvision.transforms as transforms

import torchvision.datasets as datasets

# Загрузка и предобработка данных

transform = transforms.Compose([

transforms.Resize((32, 32)),

transforms.ToTensor,

transforms.Normalize((0.5,), (0.5,))

])

train_set = datasets.ImageFolder(root='./data/train', transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

# Определение архитектуры нейронной сети с Tanh в скрытых слоях

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__

self.fc1 = nn.Linear(32*32*3, 128)

self.fc2 = nn.Linear(128, 64)

self.fc3 = nn.Linear(64, 1)

self.tanh = nn.Tanh

def forward(self, x):

x = torch.flatten(x, 1)

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

x = self.fc3(x)

x = self.tanh(x)

return x

# Создание экземпляра модели

model = SimpleNN

# Обучение модели и применение Tanh в скрытых слоях

```

В этом примере мы используем нейронную сеть с тремя полносвязными слоями. После двух скрытых слоев мы применяем ReLU в качестве функции активации, а в выходном слое – Tanh. Tanh сжимает выходные значения в диапазоне от -1 до 1, что помогает ускорить обучение по сравнению с сигмоидальной функцией, так как выходные значения более центрированы относительно нуля. Это может сделать обучение более стабильным и улучшить производительность модели.

4. Softmax: Softmax-функция обычно используется в выходных слоях для многоклассовой классификации. Она преобразует выходные значения нейронов в вероятности, суммирующиеся до 1, что упрощает интерпретацию выхода модели как вероятностей принадлежности к каждому классу.

Пример использования Softmax в нейронной сети для многоклассовой классификации изображений:

```python

import torch

import torch.nn as nn

import torchvision.transforms as transforms

import torchvision.datasets as datasets

# Загрузка и предобработка данных

transform = transforms.Compose([

transforms.Resize((32, 32)),

transforms.ToTensor,

transforms.Normalize((0.5,), (0.5,))

])

train_set = datasets.ImageFolder(root='./data/train', transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

# Определение архитектуры нейронной сети с Softmax в выходном слое

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__

self.fc1 = nn.Linear(32*32*3, 128)

self.fc2 = nn.Linear(128, 64)

self.fc3 = nn.Linear(64, 10) # 10 классов изображений

self.softmax = nn.Softmax(dim=1) # Применение Softmax по размерности 1 (по классам)

def forward(self, x):

x = torch.flatten(x, 1)

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

x = self.fc3(x)

x = self.softmax(x) # Применение Softmax к выходам

return x

# Создание экземпляра модели

model = SimpleNN

# Обучение модели и применение Softmax в выходном слое

```

В этом примере мы используем нейронную сеть с тремя полносвязными слоями. После двух скрытых слоев мы применяем ReLU в качестве функции активации, а в выходном слое – Softmax. Softmax преобразует выходные значения нейронов в вероятности для каждого класса, суммирующиеся до 1. Это позволяет нам интерпретировать выход модели как вероятности принадлежности к каждому классу, что особенно полезно в задачах многоклассовой классификации.

Эти функции активации важны для эффективной работы нейронных сетей, позволяя им адаптироваться к сложным структурам данных и делать точные предсказания в различных задачах машинного обучения и компьютерного зрения. Комбинация этих функций с другими компонентами нейронных сетей обеспечивает их способность анализировать и извлекать полезные признаки из данных, что делает их мощным инструментом для решения разнообразных задач.

Развитие архитектуры CNN

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии