Будет правильно сказать, что общая теория относительности Эйнштейна лучше аппроксимирует реальность, чем теория Ньютона. Но также следует помнить, что до тех пор, пока мы остаемся в повседневном мире, предсказания теории Ньютона чрезвычайно точны, практически идеальны. Как мы уже говорили выше, сама теория Ньютона – строгое следствие теории Эйнштейна при “низких” скоростях (которые при этом гораздо больше самой быстрой из когда-либо созданных ракет) и “небольших” гравитационных полях (куда входят гравитационные поля обычных звезд и, конечно, гораздо более слабые поля планет). Теория Ньютона по-прежнему абсолютно надежна в том смысле, что ее всегда используют инженеры при строительстве мостов, ракет, спутников, кораблей и так далее. Только в тех случаях, когда речь идет о чрезвычайно точных измерениях, необходимых, например, в навигационных устройствах с использованием спутниковых систем, инженерам иногда приходится использовать теорию Эйнштейна, а также квантовую теорию, появившуюся несколько позднее.
Научные теории – это хорошая, постоянно улучшающаяся аппроксимация реальности. Теория относительности Эйнштейна и последовавшая за ней квантовая механика – лучшее приближение к реальности, чем теория Ньютона, но, вполне вероятно, что в будущем их “вытеснит” еще более точная теория. Однако даже если это и случится, прежние теории наверняка не будут “вышвырнуты в мусорную корзину”, как туда не была отправлена и теория Ньютона сто лет назад. Это просто заблуждение.
Приведем еще один пример. В XIX веке ни у кого не вызывало сомнения, что свет представляет собой электромагнитную волну. Это было прямым следствием выведенных шотландским физиком Джеймсом Клерком Максвеллом поразительных уравнений: красивая система из четырех уравнений объединяла считавшиеся ранее независимыми теории электричества и магнетизма. Как следствие этого поразительного единения появились радио, телевизор, телефон, электрические двигатели, кинофильмы, микроволновки и несчетное количество других технологических достижений XX века.
Но в 1905 году Альберт Эйнштейн, для того чтобы объяснить закономерности фотоэффекта, предположил, что, возможно, все-таки свет не является электромагнитным излучением, а состоит из частиц (корпускул)! Многие годы никто из физиков не обращал внимания на эту гипотезу. По отношению к этому вопросу Эйнштейн оставался отступником, нонконформистом, одиночкой. Но восемнадцать лет спустя, в 1920-х годах появились экспериментальные данные (главным было открытие эффекта Комптона), которые никак нельзя было объяснить, основываясь на уравнениях Максвелла. И тогда физики задумались: может, в 1905 году Эйнштейн все же был прав? Однако отсюда не следует, что Максвелл ошибался, описывая свет как электромагнитную волну. Это просто означает, что под внешним слоем картины, описывающей распространение света, скрывается еще один, более глубокий слой и что в некоторых очень необычных условиях свет демонстрирует поведение, которое можно объяснить, только приняв его корпускулярную природу. Но во всех ситуациях, где теория света Максвелла работала раньше, она продолжает и будет продолжать работать. А это значит, что эта теория применима практически во всех ситуациях, с которыми мы обычно сталкиваемся.
Еще раз: мы видим, что значения таких слов, как “истинно” и “ложно”, не столь однозначны, как нам представлялось. Теория может быть, строго говоря, неправильной, но совершенно верной для всех практических приложений! Это справедливо как для ньютоновской картины мира, о чем шла речь выше, так и для максвелловской теории световых волн. В какой-то момент каждая из них считалась универсальной, идеальной, окончательной. Но теперь мы понимаем, что данные теории имеют границы применимости. Это, однако, не означает, что они непригодны в обычных ситуациях. Действительно, старые теории лучше всего подходят, когда надо понять, что происходит в обычных ситуациях, и именно поэтому главным образом их изучают во всех курсах физики в старших классах и в университетах, и по-прежнему все инженеры используют именно их.
В настоящее время считается, что свет ведет себя двояко: иногда это волны, а иногда – частицы. Это равновесие шаткое, поскольку в реальной жизни люди не сталкиваются ни с чем, ведущим себя столь неоднозначно. Но приходится примириться с этим, поскольку таково наилучшее описание этого мистического явления. Даже Эйнштейн, создатель современного представления о свете, до конца жизни чувствовал себя обескураженно, глядя на свое создание – квант света или, как мы сейчас говорим, фотон. В 1951 году, всего за четыре года до смерти, он жаловался в письме своему старинному другу Мишелю Бессо:
Пятьдесят лет серьезных раздумий не приблизили меня к ответу на вопрос: “Что же такое квант света?” Конечно, сегодня каждый жулик думает, что знает ответ, но он себе льстит.