Читаем Тайная жизнь чисел полностью

он прекрасно понимает их, даже не зная, что эта формула описывает закон сохранения импульса в жидкости.

Математическая мысль следовала многими трудными путями, пока не обрела нынешнюю форму: теперь математики всего мира могут понять друг друга, так как используют общий метаязык. Воздадим дань уважения тем, кто, часто из соображений простоты, вводил универсальные знаки, как, например,


и тем, кто соглашался использовать обозначения в своих работах. До появления этих символов и сокращений математика была чрезвычайно многословной и непонятной.

Попробуйте описать привычное всем квадратное уравнение


словами, не используя ни показатели степени, ни буквы, ни знаки =, + и —, ни знак деления, ни , ни даже логический символ <=>. Посмотрим, что у вас получится.

Авторы многих из этих знаков не слишком известны: так, например, скромный священник Уильям Отред (1574–1660) первым стал обозначать умножение знаком х, ввел сокращения sinα и cosα, а также изобрел круговую логарифмическую линейку. За всю жизнь он написал всего один труд объемом 88 страниц и в свое время считался математиком-любителем. В тот период эта наука, можно сказать, пребывала в нежном возрасте.

Когда же математика повзрослела? Один из ответов звучит так: когда было напечатано достаточно книг по математике, чтобы стало возможным определить универсальные обозначения. В 1875 году в Великобритании был учрежден комитет по унификации печатных книг, а также используемых при печати символов и сокращений. Много воды утекло с тех пор, и на свет появились совершенно новые разделы математики и математические теории, однако общие обозначения остались неизменными.


У логики есть своя логика


Американский математик и логик Уиллард Ван Орман Куайн (1908–2000) запомнился прежде всего подробными исследованиями взаимосвязей между обычным языком и языком науки. Многие ученые разделяли его точку зрения, высказанную в активной дискуссии с Жаком Деррида и другими деконструктивистами, которых Куайн считал псевдофилософами, а то и вовсе шарлатанами. Ван, как называли его друзья, много печатал на машинке, и как-то раз, направив свой ум в практическое русло, решил поменять местами несколько клавиш на клавиатуре. В частности, чтобы сэкономить время, он заменил символы «1», «!» и «?» другими, особыми логическими знаками, которые часто встречались в его записях. Как же Куайн обходился без привычных всем восклицательного и вопросительного знаков? Когда друзья спросили его об этом, то получили абсолютно логичный ответ: «Видите ли, в моем кабинете я работаю только с достоверными результатами».


Сложное домашнее задание


Американский математик Джордж Бернард Данциг (1914–2005) известен среди специалистов по линейному программированию как автор алгоритма, применяемого в решениях симплекс-методом, который играет основную роль в дисциплине под названием исследование операций. Среди любителей анекдотов он известен тем, что принял за домашнюю работу задачи, являвшиеся темой серьезных исследований.

Но эта история заслуживает более подробного рассказа.

В 1939 году одним из университетских преподавателей Данцига стал известный польско-американский математик Ежи Нейман (1894–1981), который вел курс статистики. Как-то раз Данциг опоздал на занятия и попросил Неймана не стирать написанное на доске, так как не хотел терять нить рассуждений. Он обратил внимание на два выражения, которые посчитал домашним заданием, и переписал их к себе в тетрадь. Придя домой, Данциг принялся за домашнее задание, однако оно оказалось на удивление трудоемким. Студент потратил много времени и сдал работу с опозданием. «Оставь ее в углу», — сказал Нейман, кивнув на стол, заваленный огромной кипой бумаг. Данциг молча положил свою работу сверху.

Прошло несколько недель, и однажды в воскресенье Данциг услышал звонок в дверь. Перед ним стоял взволнованный Нейман, державший в руках исписанные листы. «Быстро прочитай все, что здесь написано, — я намерен сегодня же передать это для публикации». Нейман держал в руках домашнюю работу Данцига, изложенную в виде статьи и дополненную предисловием самого Неймана. Данциг ошибочно принял за домашнее задание две важные статистические гипотезы, которые никому до этого не удавалось доказать. Он не знал об этом и доказал их, посчитав гипотезы всего лишь непростыми задачами.


Все заканчивается на «АС»


Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное