Читаем Тайная жизнь чисел полностью

То, что казалось сложным лауреату Нобелевской премии по физике, показалось легким лауреату Нобелевской премии по литературе. Кейнс не получил Нобелевскую премию по экономике — на тот момент она еще не была учреждена.

Вопрос четности

Советский физик и астроном Георгий Гамов рассказывал, что в 1929 году состоялась важная конференция с участием крупных физиков. На ней была представлена формула Клейна — Нишины, которая играет важнейшую роль в исследованиях элементарных частиц, так как описывает столь важное (для посвященных) явление, как рассеяние фотонов в квантовой хромодинамике. Статья, в которой приводилась эта знаменитая формула, называлась «Űber die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac» («О взаимодействии свободных электронов с излучением по дираковской теории электрона и по квантовой электродинамике») и принадлежала шведскому физику Оскару Клейну (1894–1977) и одному из уважаемых творцов современной физики Есио Нишине (1890–1951). На конференции выступил сам Нишина, а среди присутствующих находился молчаливый, но очень опасный защитник только-только зарождавшейся новой физики — английский ученый Поль Дирак (1902–1984), который тогда еще не был нобелевским лауреатом.

Нишина бойко записывал на доске свои выкладки, пока один из присутствующих не заметил, что в последней формуле содержится знак «минус», которого не было в исходной статье. Нишина не придал этому особого значения — должно быть, он попросту случайно сменил знак посреди хитросплетения расчетов. «Поищите в статье — в одном из мест знак изменен верно». И тут оживился Дирак, который, как обычно, в течение всего выступления дремал: «Ищите в нечетном числе мест», — заметил он. И действительно, если ошибка в знаке содержится в трех, пяти, семи местах и так далее, результат не изменится. Единственное, что имеет значение — четность числа ошибок. Одни скажут, что Дирак стоял на страже математических идеалов, а другие возразят, что он всего лишь хотел уязвить собеседника.

Поль Адриен Морис Дирак, лауреат Нобелевской премии по физике.

Третейский судья

Было время, когда имя сэра Артура Эддингтона (1882–1944) почиталось всеми. Этот астрофизик обладал огромным авторитетом и был признанной величиной в мире науки. Он увлекался нумерологией и часто использовал число, которое называл космическим. Оно равнялось числу частиц во Вселенной, и Эддингтон считал его равным

136·2256  = 13 747 724136 275 002 577 605 653 961181555 468 044 717 914 527 116 709 366 231425 076185 631031296.

Это поистине астрономическая величина, и наш герой умело жонглировал ею. Он был действительно блестящим математиком, а также славился остроумием и легким характером.

Эддингтон считался достаточно умным, чтобы воспринять теорию относительности Эйнштейна, которая в то время была воплощением непонятного и загадочного. Личность Эддингтона хорошо описывает одна история, связанная с теорией относительности. Польско-американский физик и признанный специалист по теории относительности Людвиг Зильберштейн (1872–1948) однажды похвалил Эддингтона: «Говорят, что вы — один из трех человек в мире, способный понять теорию относительности Эйнштейна». Эддингтон немного подумал и спросил: «А кто же третий?» Очевидно, что первыми двумя он считал себя самого и Эйнштейна. Впрочем, справедливости ради отметим, что нескромность была чуть ли не единственным недостатком ученого.

Сэр Артур Эддингтон (справа) с Альбертом Эйнштейном.

Математик, которого никогда не существовало

Когда кто-то хочет рассказать не совсем обычную историю о математике, речь заходит о Николя Бурбаки. Мы не указываем год его рождения, так как, строго говоря, у Николя Бурбаки его нет. И вообще, этот один из наиболее влиятельных математиков XX века в действительности никогда не существовал.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги