Читаем Тайная жизнь чисел полностью

В конце жизни Гёдель посчитал, что ему неплохо бы получить американское гражданство. Для этого, согласно правилам, требовалось поклясться в верности Конституции США перед судьей и в присутствии двух свидетелей. Свидетелями стали друзья — и какие! Оба они, как и Гёдель, прошли через Институт перспективных исследований в Принстоне. Одним был Альберт Эйнштейн, другим — экономист Оскар Моргенштерн (1902–1977), создавший вместе с Джоном фон Нейманом теорию игр. Оба опасались, что Гёдель совершит что-нибудь неразумное во время церемонии — им было известно о прогрессирующей паранойе ученого, и они уже знали, что Гёдель прочел Конституцию США и своим острым умом обнаружил статьи, которые содержали лазейки, позволявшие установить диктатуру.

Настал момент, когда Гедель должен был предстать перед судьей, который счел себя обязанным побеседовать со столь выдающимися людьми, ведь перед ним предстали три величайших интеллектуала мира. Со всей вежливостью судья напомнил Геделю, что произошедшее на его родине (судья ошибочно упомянул Германию, хотя Гедель был гражданином Австрии) больше не повторится: «Американская конституция никогда не позволит установить диктатуру в нашей стране». Это было равносильно упоминанию веревки в доме повешенного. Гёдель с жаром начал свое выступление: по его словам, из-за лазеек в Конституции диктатура в США была вполне возможной. Но свидетели поспешно перебили Гёделя и перевели разговор на другую тему. Беседа закончилась ничем — все присутствующие, включая судью, решили больше не беспокоить прославленного логика. Гёдель в конце концов получил желаемое гражданство — судья вынес положительный вердикт, возможно, только для того, чтобы больше не слушать Гёделя.

«Все хорошо, что хорошо кончается» — должно быть, подумал Эйнштейн. «И кто только просил меня ввязаться в это дело?» — должно быть, подумал Моргенштерн. «Но мне не дали объясниться!» — наверняка сказал Гёдель. «Вот потеха!» — подумал бы американский комик Граучо Маркс, если бы мог присутствовать при разговоре.

Курт Гёдель в Институте перспективных исследований в Принстоне.

Особый словарь

Пал Эрдёш выделялся не только своими нестандартными подходами в математике и крайней научной плодовитостью — он также использовал особый язык. Необычная манера выражаться стала следствием излишней увлеченности Эрдёша математикой, и она достойна нескольких страниц в нашей книге. Ограничимся лишь избранными примерами, которые нетрудно найти даже в интернете.

Идеальная афера

Математики способны придумывать превосходные аферы — даже жаль, что они профессионально этим не занимаются. Математик Джон Аллен Паулос (род. 1945) преуспел на литературном поприще, написав несколько книг по математике, ставших мировыми бестселлерами. Возможно, самой успешной из них была книга «Математическая безграмотность и ее последствия». В ней Паулос демонстрирует неспособность современного человека оперировать числами в повседневной жизни. К примеру, использование процентов вызывает затруднения у миллионов людей, даже вполне грамотных.

Однако мы упомянули Паулоса по другой причине. В книге «Математическая безграмотность» он объясняет инвестиционную аферу, которую может провести любой, обладающий достаточным начальным капиталом. Изложим ее на свой страх и риск.

Допустим, что мы разослали 64 тысячи сообщений по разным адресам. В половине из них мы рекомендуем адресату совершить вложения, в другой половине советуем не инвестировать. В итоге 32 тысячи сообщений окажутся истинными — неплохой результат. Повторим эту же операцию, к примеру, еще 5 раз, но не будем отправлять сообщение тем, кто в прошлый раз получил ошибочный совет. В итоге у нас останется 1000 адресов людей, получивших подряд шесть сообщений с верной информацией об инвестициях. В нашем мире жесткой конкуренции, полном неопределенности, получить шесть верных сообщений подряд попросту немыслимо.

Таким образом, у нас есть 1000 потенциальных жертв аферы. Мы можем убедить кого-нибудь из этой тысячи передать нам определенную сумму для того, чтобы мы выгодно ее вложили. Разумеется, деньги жертве мы не вернем. Внесем ясность: эту схему описал Паулос, мы же не несем за нее никакой ответственности.

Верить нельзя даже «Коду да Винчи»

Роман «Код да Винчи» не только стал бестселлером на всех языках, но и вызвал интерес у любителей математики, так как многие ключи к загадке романа имеют отношение к арифметике или геометрии. Автор обрушивается с жестокой критикой на такие организации, как Опус Деи, и это вызвало недовольство в некоторых кругах. Неприязнь недоброжелателей стала бы еще больше, если бы им сообщили, что в математических выкладках, приведенных в «Коде да Винчи», имеются неточности. Расскажем об одной из них.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги