В конце 1960-х мне повезло стать студентом-медиком в Шеффилдском университете. Уотсон и Крик еще были относительно молоды, и их открытие было сделано всего 15 или 16 лет назад. Я помню ощущение чуда, когда преподаватели рассказывали нам о строении ДНК, и помню, как ясно и просто ее четырехбуквенный код расшифровывался в белки. У нас были лекции по генетике, на которых мы поняли, что мутации — важный шаг в понимании самых разных наследственных болезней, включая так называемые наследуемые ошибки метаболизма. Нам также рассказывали о важности этих открытий для родственной отрасли знания — эволюционной биологии. Припоминаю, как волновало меня понимание того, что биология и медицина вот-вот увидят мир совершенно по-другому, основываясь на более глубоком понимании ДНК и ее молекулярных вариаций. Это понимание, естественно, повлияет не только на ученых-биологов и врачей, но и на человечество в целом. Однако на том этапе многие важные вопросы еще оставались без ответов.
Вот один очевиднейший вопрос: как оплодотворенное яйцо (зигота) чудесным образом развивается в сложный организм — человеческого ребенка? Как эта удивительная молекула, ДНК, хранит не только наследственную информацию индивидуума, но и набор инструкций, по которому одна клетка, зигота, дает начало развитию эмбриона с самыми разными клетками, тканями и органами, из которых затем получается человеческое дитя?
Науке было многое известно о развитии тканей эмбриона, однако ученые очень мало знали о генетике, регулирующей соответствующие процессы. Работы в Институте Пастера (Франция) впервые приоткрыли завесу тайны: они дали нам понимание того, как гены активируются и деактивируются включением и выключением последовательности нуклеотидов — промотора. Это был первый шаг на пути к тому, что сегодня мы называем «регуляцией экспрессии генов».
В те времена мы уже знали, что клетки, из которых состоят различные ткани и органы человеческого тела (например, клетки мозга, или лимфоциты, борющиеся с инфекцией в нашей крови, или клетки, из которых состоят почки, печень, сердце или лёгкие), содержат в ядре одну и ту же ДНК. Разница в структуре и функциях этих клеток и, соответственно, формирование различных тканей и органов подразумевает, что должна быть какая-то разница в экспрессии генов. Здесь возникает вопрос, чем вызваны различия — разными генами или разницей в профилях или времени экспрессии одних и тех же генов?
На этом вопросы не заканчивались.
Каким бы ни было объяснение — отдельные гены для отдельных клеток или разные профили экспрессии одних и тех же генов, — все равно должна существовать система, которая решает, какой именно ген (или какой профиль) запустится для тех или иных клеток, тканей и органов. Это будет ключевым фактором в планировании и регулировании развития человеческого эмбриона. Скорее всего, схожие механизмы будут работать для эмбрионов всех животных, а может быть, даже для растений.
Вспомним Сиднея Бреннера, который вместе с Криком изучал трансляцию генов в белки в Кавендишской лаборатории. В 1973 году, работая в лаборатории Центра медицинских исследований в Лондоне, Бреннер опубликовал работу по этому вопросу. Она начиналась так: «Как гены могут определять сложные структуры высших организмов? Биология еще не знает ответа на этот важный вопрос». Он объяснял, что на данный момент многие молекулярные механизмы, ранее найденные у микробов, в таком же виде были найдены в эукариотических клетках — клетках животных и растений, в которых есть ядро. Генетический код оказался универсальным — и механизмы синтезирования белка по этому коду тоже. «Существует много объясняющих это теорий [как ДНК высших организмов контролирует регуляцию экспрессии генов], но вопрос в целом остается невыясненным». Бреннер выбрал другую модель, чтобы изучить, как устроены и организованы гены животных. В своей работе он рассказал об этой новой модели: миниатюрный круглый червь
Короче говоря, для генетиков червь представляет идеальный образец для экспериментов: его легко разводить, безопасно хранить в больших количествах и у него есть особи различных полов и генетика, которую легко изменять.