При дальнейшем нагревании жидкости из нашего примера гексагональная структура будет вытеснена цилиндрическими ячейками, т. е. вместо картины, представленной на рис. 4.20, в жидкости возникнет движение, схема которого показана на рис. 4.6. Математический анализ (подробности которого мы вынуждены, естественно, опустить) допускает отчасти забавное, но все же наводящее на размышления объяснение. Под влиянием изменившихся условий между тремя начальными конфигурациями, стабилизировавшими друг друга ради создания гексагональной структуры, возникает конкурентная борьба; в результате опять-таки случайной флуктуации в этой борьбе побеждает только одна из конфигураций. Именно она начинает
управлять всей системой, подчинив себе остальные ячейки, и движение, определяемое сю, подавляет все прочие типы движения в системе.
Описания такого рода демонстрируют, насколько слились здесь представления о природных феноменах с представлениями, бытующими в социологии и психологии. Преимущество рассматриваемых здесь процессов заключается, однако, в том, что мы можем математически точно рассчитать каждый из них и исследовать.
Совершенно разнородные процессы в природе подчиняются — что поразительно! — одним и тем же закономерностям, и в нашей книге будет приведено еще множество примеров в подтверждение этого наблюдения.
Однако уже сейчас имеющиеся у нас знания позволяют установить основной принцип. При изменении внешних условий (например разницы между температурами верхнего и нижнего слоев жидкости) прежнее состояние системы (в нашем примере — состояние покоя) становится неустойчивым и заменяется новым макроскопическим состоянием. Вблизи от точки перехода система «тестирует» новые возможности упорядочивания макроскопического состояния посредством непрерывных флуктуаций. Начиная с самой точки неустойчивого равновесия и в последующие моменты времени новые конфигурации коллективного движения набирают все большую силу и в конце концов вытесняют все прежние конфигурации. При этом имеет место не только конкурентная борьба, но и своего рода кооперация равноправных конфигураций, приводящая к возникновению новых структур. В отличие от фазовых переходов в условиях температурного равновесия здесь система находится в непрерывном движении, и нам приходится рассматривать ее в динамике. Иногда при создании новых структур окончательно определиться помогает внешняя форма. Например, нагревая жидкость в сосуде прямоугольной формы, мы могли наблюдать сосуществование двух перпендикулярных друг другу цилиндрических ячеек, явившееся основой для конфигурации, показанной на рис. 4.24.
Рис. 4.24. Вил сверху на поверхность слоя жидкости, нагреваемой снизу: образование конфигурации из двух взаимно перпендикулярных цилиндрических структур
Еще один пример того, насколько значительным может оказаться влияние внешней формы, приведен на рис. 4.25. Экспериментально подтвержденная теория показывает, что при нагревании, не ограниченном только дном сосуда с жидкостью, гексагональная структура (рис. 4.20) заменяется спиральной конфигурацией.
Рис. 4.25. При нагревании не только дна, но и стенок сосуда круглой формы возможно преобразование гексагональной ячеистой структуры в спиральную: показаны фрагменты процесса
Возможны и еще более сложные конфигурации: одна из них показана на рис. 4.26. Подобные структуры уже не статичны, и их непрерывное «пульсирующее» движение, которое может даже навести на мысль о дышащей жидкости, можно наблюдать невооруженным глазом.
Рис. 4.26. Вид сверху на поверхность слоя нагреваемой снизу жидкости: возникшая конфигурация сложностью рисунка напоминает узор на ковре
Ступенчатые конфигурации
Упорядоченные конфигурации движения жидкости могут возникать не только в результате нагревания.