В лабораторных условиях довольно просто осуществить следующий эксперимент. Возьмем два коаксиальных цилиндра и заполним пространство между ними жидкостью; затем начнем вращать внутренний цилиндр. При вращении происходит следующее: жидкость как бы разделяется на два слоя — внешний и внутренний. При небольших скоростях вращения внутреннего цилиндра образуются концентрические линии обтекания. Однако при повышении скорости до значений, превосходящих критическое, возникает совершенно иной тип движения жидкости (рис. 4.27а). Образующиеся при этом цилиндрические ячейки оказываются изогнуты наподобие франкфуртских сосисок. При дальнейшем повышении скорости вращения внутреннего цилиндра ячейки начинают вибрировать, вызывая циркуляцию жидкости (рис. 4.27б). При дальнейшем увеличении скорости картина усложняется (рис. 4.27в). На последней ступени этой лестницы мы еще раз увеличиваем скорость вращения и наблюдаем процесс полной смены картины движения жидкости: теперь перед нами совершенно неупорядоченное движение, иначе называемое турбулентностью; в последнее время используется также термин «детерминированный хаос» (рис. 4.27г).
Рис. 4.27. Движение жидкости между двумя коаксиальными цилиндрами. Наружный — прозрачный — цилиндр покоится, а внутренний вращается. В зависимости от скорости вращения внутреннего цилиндра в жидкости возникают различные конфигурации: а) ячейки похожи на сосиски, уложенные вокруг внутреннего цилиндра, б) ячейки начинают совершать колебания, в) движение ячеек все более усложняется и г) приобретает беспорядочный, хаотический характер
Этот пример наглядно иллюстрирует ступенчатое образование сложных структур из более простых посредством самоорганизации. Переходя на язык синергетики, можно сказать, что в жидкости сменяют друг друга все новые параметры порядка.
Последующий переход системы к полностью разупорядоченному, хаотическому движению заставляет предположить, что в данном случае параметр порядка теряет над системой всякую власть. Однако к этому мы вернемся позднее, в главе 12.
Описанный пример очень важен еще и потому, что демонстрирует возможность возникновения хаотического движения в системе, в которой при совершенно определенных экспериментальных условиях протекали процессы самоорганизации. В последние годы исследования такого хаотического движения переживают период бурного развития. Математические модели показывают, что подобного рода явления неизбежны не только в физике, но и в далеких, казалось бы, от физики областях — например в экономике. Причем в свете полученных результатов некоторые догмы экономической теории окажутся, по всей видимости, не у дел. Читателям, которые сейчас готовы прийти к выводу, что самоорганизация ведет к хаосу, а организация (т. е. внешнее управление), напротив, может помочь избежать хаоса, будет, возможно, небезынтересно узнать, что самоорганизующуюся систему чаще всего приводят к хаосу именно контролируемые извне процессы.
Еще раз ненадолго вернемся к физике. Возникновение все более сложных конфигураций движения в жидкости — феномен, очень широко известный в гидродинамике (рис. 4.28). На рисунке изображен обтекаемый жидкостью цилиндр, причем изменения конфигураций движения жидкости при увеличении ее скорости в ходе эксперимента показаны на отдельных схемах: различные конфигурации, приводящие в конечном счете к образованию завихрений, возникают в строго определенной последовательности.
Рис. 4.28. Схема изменения конфигураций движения жидкости, обтекающей цилиндр. Увеличение скорости обтекания ведет к усложнению конфигураций