Читаем Танец жизни. Новая наука о том, как клетка становится человеком полностью

Затем я успешно применила GFP в исследовании мышиных эмбрионов, хотя к тому времени другие ученые без моего ведома успели опробовать этот маркер на клетках млекопитающих [9]. Наверное, из-за того, что они не использовали GFP для изучения яйцеклеток или эмбрионов, я и Мартин ничего не знали об их работах.

Джон Пайнз первым показал мне, как улучшить текст моих научных работ. Наша первая совместная статья описывала применение MmGFP для отслеживания клеток в живых эмбрионах мышей и была опубликована в 1997 году в Development — там же, где вышла наша с Джоном Гёрдоном статья о лягушачьих эмбрионах [10]. Неудивительно, что Development стал моим любимым журналом.

Но статья не рассказывала обо всем, что мы обнаружили. Эта первая работа по отслеживанию клеток в живом эмбрионе вызвала не только изумление, но и тревогу. Когда я маркировала в случайном порядке клетки эмбрионов на двух- или четырехклеточной стадиях, я видела, что клетки не вели себя как идентичные друг другу. Они противоречили общепринятому представлению о том, что «разум» первых клеток эмбриона совершенно одинаков и чист. Я предусмотрительно не включила свое открытие в статью для Development и сосредоточилась на описании новой технологии отслеживания.

Но я не могла забыть об этих неожиданных результатах и обсудила их с Джоном. Если обе клетки в эмбрионе двухклеточной стадии и все четыре клетки в эмбрионе четырехклеточной стадии являются идентичными, они должны случайным образом вносить вклад в создание разных частей эмбриона на последующих стадиях. Именно так мой наставник Тарковский интерпретировал результаты новаторского эксперимента 1959 года. Однако это никак не вязалось с моими результатами.

А потом я нашла зацепку, факт, которым пренебрегали при объяснении более ранней работы. Если разделить двухклеточный эмбрион на две отдельные клетки, только одна будет развиваться в целую мышь. Многие пытались превратить две половинки двухклеточного эмбриона в двух мышей, включая ведущих онтогенетиков Энн Макларен и Джинни Папайоану, к которым я вернусь позже. Их эксперименты либо провалились, либо имели крайне низкие показатели успеха. Мы все думали, что проблема была в технике выполнения, а не в различиях между этими ранними клетками. Но что, если мы упустили нечто большее? Что, если в двухклеточном эмбрионе только одна клетка является действительно тотипотентной и поэтому, в отличие от второй клетки, может создать как плаценту, так и сам эмбрион? Если все правда, то изучение этих клеток позволит понять саму тотипотентность и то, когда и как она утрачивается в первый раз.

Подчеркну, что этот эффект не детерминирован — ни в коем случае, ведь эмбрион пластичен: мои эксперименты по отслеживанию «родословной» клеток эмбриона выявили уклон, толчок в определенном направлении развития, а недетерминированный процесс. Что еще проблематичнее — не в каждом эмбрионе этот уклон был таким очевидным. Но тот факт, что это происходило у подавляющего большинства эмбрионов, говорил о наличии закономерности. Как и мой герой-ученый Алан Тьюринг, я была очарована так называемым нарушением симметрии в раннем эмбрионе. Встретив меня в то время, вы бы поняли, что мысли о нарушении симметрии захватили меня целиком и полностью.

Полярные тельца


Существовавшее в те годы сопротивление идее о том, что эмбрион утрачивает идеальную симметрию на ранней стадии развития, вызывало недоумение еще и потому, что оплодотворенная яйцеклетка уже содержит намек на асимметрию. Все дело в истории ее созревания. К каждой оплодотворенной яйцеклетке прикреплены две маленькие клетки, одна из которых создана до, а вторая после слияния яйцеклетки и сперматозоида. Эти клетки появляются в результате особого вида клеточных делений — мейоза. По этим маленьким клеткам традиционно различают два конца яйцеклетки: так называемые анимальный и вегетативный полюса, где первый содержит ядро с ДНК, а второй наполнен желтком. Крошечную клетку анимального полюса когда-то называли направительным тельцем за то, что она обозначает место, где в дальнейшем произойдет первое дробление. Сегодня эти скромные клеточки именуют полярными тельцами [11].

Они нужны для того, чтобы положить начало созданию нового индивидуума, позаимствовав в равной степени ДНК матери и отца. В каждом из нас есть генетическая смесь из ДНК обоих родителей, упакованная в клетках в виде двадцати трех пар хромосом. Как отражение этой избыточности, наши клетки называются диплоидными и ежедневно размножаются путем клеточного деления митоза, при котором их хромосомы копируются и с помощью белковых «двигателей» распределяются между двумя дочерними клетками. Но чтобы сперматозоид и яйцеклетка скомбинировали свою ДНК для создания новой жизни, им нужен противоположный процесс, где каждому достается только половина хромосомного набора, в сумме дающая норму из сорока шести (двадцати трех пар) хромосом в оплодотворенной яйцеклетке.

Перейти на страницу:

Похожие книги