Читаем Танец жизни. Новая наука о том, как клетка становится человеком полностью

Идеи, возникшие в результате нашей совместной работы, привели к моей первой публикации в Nature. Поскольку это престижный журнал, коллеги по-настоящему обратили на мою группу внимание. Наша работа произвела фурор. Но не в том смысле, в котором я ожидала.

Симметрия стала центром отвратительных дискуссий. Оглядываясь на прошлое с научной точки зрения, могу сказать, что это был самый тяжелый этап моей научной жизни, казавшийся бесконечным. Джон Гёрдон помог мне своей спасительной дружбой и поддержкой. В свое время он предупреждал, что, если мы обнаружим нечто действительно важное, но противоречащее существующей догме, пройдет десять лет, прежде чем наше открытие будет подтверждено и принято другими группами, и еще десять, прежде чем оно получит признание. Я оказалась просто еще одним человеком, пострадавшим в долгой борьбе за понимание премудростей симметрии. Это событие на годы стало моим тяжким бременем.

Оплодотворение


По прибытии Каролины в Кембридж мы начали с изучения зарождения — Большого взрыва[8] индивидуального развития, момента встречи сперматозоида и яйцеклетки. Последняя — не заурядная клетка, а та, что преисполнена потенциалом и уникально экипирована для создания новой жизни. Это клетка, которая может расти и делиться, чтобы создавать историю, записывать ее и даже менять.

Когда на одном конце развивающейся клетки раннего эмбриона накапливается конкретный набор белков (PAR-белков, о которых я уже упоминала), делающий его непохожим на другой конец, клетка приобретает полярность. К моменту имплантации эмбриона в теле матери в нем уже сформированы из клеток с разной судьбой первые три ткани, значительно отличающиеся друг от друга. Образуются новые оси, вроде тех, что идут в трех взаимно перпендикулярных направлениях: передне-задняя (голова-хвост), дорсально-вентральная (спина-живот) и саггитальная (право-лево) оси. После почти двух десятков лет исследований мы по-прежнему удивительно мало разбираемся в том, как решается судьба клеток и как закладываются оси, самые ранние признаки ключевых изменений, а также в том, как они определяют наше будущее.

Некоторые элементы жизненной истории оказываются более симметричными, чем принято считать.

После изучения старых учебников по биологии может сложиться сильное впечатление, что яйцеклетка сидит на месте, словно высокомерная принцесса, и ждет, когда ее оплодотворят, а в это время сперматозоиды расталкивают друг друга в борьбе за ее руку и сердце.

Однако чтобы получить шанс на оплодотворение, яйцеклетка, зеркально отражая тяжелую участь сперматозоидов, вынуждена сначала соревноваться с множеством других яйцеклеток. К моменту рождения девочки в ее яичниках есть все яйцеклетки, которые будут высвобождаться на протяжении репродуктивного периода. Таких клеток примерно четыреста тысяч. Некоторые из них могут не созревать сорок лет, другие — дегенерировать, так и не созрев. Яйцеклетки находятся в спящем состоянии вплоть до овуляции, когда клетка получает от жизни первый приз и высвобождается под давлением из заполненной жидкостью структуры яичника.

Другие же аспекты первого танца жизни не так симметричны, как их описывают. Многие считают яйцеклетку и сперматозоид равными партнерами в деле создания новой жизни. По одному очень важному пункту — вкладу генетического материала матери и отца — они действительно равны. Но в подобном восприятии недооценивается человеческая яйцеклетка как мощный генератор потенциала, трансформации и перемен.

Крошечный сперматозоид и могучая яйцеклетка


Яйцеклетка — это могучая биохимическая вселенная, уникально оснащенная ДНК, РНК и белками, а также митохондриями (клеточными аккумуляторами) и многими другими органеллами. У нее даже есть «скорлупа» — умный защитный барьер под названием zona pellucida, избирательно проницаемый для сперматозоидов.

Хотя яйцеклетка — самая крупная клетка человеческого организма, она невидима глазу и составляет у человека всего одну десятую миллиметра в поперечнике. Тем не менее она является чудесной машиной сотворения, которая миллионы лет совершенствовала свои навыки моделирования нового индивидуума из генов матери и отца.

После оплодотворения в яйцеклетке закипает активность. Она освобождает ДНК сперматозоида от молекулярных меток — метильных групп, контролирующих включение и отключение генов. Эти паттерны метилирования (эпигенетические модификации) — одна из причин того, почему все клетки организма имеют одинаковый набор генов, но отличаются друг от друга, как, например, нервная клетка от мышечной. Молекулярные метки гарантируют, что клеточный оркестр будет играть одну конкретную мелодию, где каждая нота — это ген, ответственный за синтез белка. Без этих меток онтогенетический таймер обнуляется. Закладывая новые мелодии (онтогенетические паттерны), ранний эмбрион способен создать любую клетку организма.

Перейти на страницу:

Похожие книги