Моей основной мотивацией было желание понять базовые принципы самых ранних стадий нашего развития, его пластичность и то, как эмбрион строит самого себя из отдельных клеток. Большинство экспериментов я проводила на мышах, но с учетом многочисленных различий в развитии мыши и человека и появления подходящих технологий я изучала и человеческие эмбрионы. Поскольку предметом моих (и многих других) исследований было формирование клеток и превращение их в разные типы, практическое применение полученных данных подходит для регенеративной медицины и репродукции человека.
Одним из пионеров регенеративной научной революции является Джон Гёрдон. Он совершил прорыв, когда впервые продемонстрировал возможность клеточного перепрограммирования в своем исследовании 1962 года [9]. В те годы его коллеги полагали, что клеточная специализация — это улица с односторонним движением, процесс, который нельзя повернуть вспять, и потому клеткам кожи не суждено стать кем-то покруче, а клетки мозга никогда не превратятся в мускулы.
Несмотря на недоверие и критику, Джон опроверг существующую догму, вынув ядро из лягушачьей яйцеклетки и заменив его ядром кишечной клетки головастика. Хотя последняя уже прошла специализацию, из ее ядра, имплантированного в яйцеклетку, чудесным образом развился нормальный головастик [10]. Эти эксперименты показали, что стрелки клеточных часов можно перевести назад, а потому вполне реально взять зрелую клетку, например кожи, и снова сделать ее эмбриональной.
За это открытие Джон Гёрдон много лет спустя получил Нобелевскую премию 2012 года, разделив ее с Синъей Яманакой из Киотского университета (Япония). Шинья открыл гены, с помощью которых зрелую клетку можно перепрограммировать в эмбриональную. Рецепт удивительно прост — надо активировать всего четыре гена. Хотя эффективность его протокола была довольно низкой, он продемонстрировал фундаментальные принципы.
Роджер Хайфилд был одним из первых журналистов, сообщивших об этом достижении и подчеркнувших тот факт, что технология Синъи Яманаки предлагает (вместо разбирания на части клонированных эмбрионов) более этичный способ выращивания клеток и тканей для конкретного пациента [11].
Индуцированные плюрипотентные стволовые клетки (иСК) можно целенаправленно превратить в различные типы зрелых клеток, таких как клетки сердечной мышцы и мозга, что открывает колоссальные возможности для терапии стволовыми клетками.
Вопреки распространенному мнению, стволовые клетки используются в медицине довольно давно. Доналд Томас получил в 1990 году Нобелевскую премию за трансплантацию костного мозга — работу, которую начал выполнять еще в 1950-х [12]. Костный мозг содержит гематопоэтические стволовые клетки, которые могут превращаться во многие типы клеток крови. Подобные трансплантаты уже давно используются для лечения лейкемии — ракового заболевания крови и костного мозга. С их помощью восстанавливают организм после химиотерапии, но эффективность этого лечения зависит от совместимости клеток донора и реципиента. Если они плохо подходят друг другу, клетки реципиента воспринимают трансплантированные клетки как «чужие» и атакуют их, что может быть опасным для жизни.
Стволовые клетки, выращенные из собственных клеток пациента, могут обеспечить его совместимой тканью любого типа. Однажды наступит такой день, когда можно будет взять, например, клетки кожи и превратить их в клетки сердечной мышцы, чтобы восстановить повреждения после сердечного приступа. Потенциально из стволовых клеток можно получить инсулин-продуцирующие клетки для лечения диабета. В будущем из стволовых клеток можно выращивать нервные клетки для восстановления разорванного спинного мозга или по тому же принципу восстанавливать поврежденные сердце или печень. Кроме того, стволовые клетки дают надежду людям, теряющим разум из-за болезни Альцгеймера или тело из-за болезни Паркинсона.
Но перед тем как поставить выращивание замещающих клеток на поток, мы должны научиться наставлять стволовую клетку на правильный путь развития. Если не сделать это должным образом, ее развитие может пойти в неожиданном направлении, вплоть до превращения в раковую клетку [13]. Поэтому пройдут годы и даже десятилетия, прежде чем лабораторная наука станет надежным методом лечения.
Вот почему так важно инвестировать в самую творческую базовую науку. Когда Джон Гёрдон совершал свое открытие по перепрограммированию клеточного ядра, он не думал о том, что однажды оно будет использоваться для улучшения здоровья. Большинство ученых, занимающихся фундаментальными исследованиями, ощущают то же самое. Правильно усвоив основы и разобравшись в том, как работает биология, можно гораздо успешнее применять эти знания в терапии.
Первые эмбриональные стволовые клетки