Принцип спирали охватывает всю совокупность природных элементов - от мельчайчих до поистине гигантских. Приведем только два примера: раковина улитки, с одной стороны, и форма нашей галактики, с другой. И в том, и другом случае мы имеем дело с одной и той же логарифмической спиралью (еще одним примером которой служит человеческое ухо). Наконец, возвращаясь к теме нашей книги, считается, что такой же спирали должна следовать динамика рынка ценных бумаг, ведь последний не только представляет прекрасный пример проявления массовой психологии, но также является одной из форм естественного развития, определяющего весь прогресс рода человеческого.
Мы уже говорили, что тремя важнейшими аспектами теории Эллиота являются форма волны, соотношение волн и время. Мы уже обсудили конфигурации волн - это важнейшая их характеристика, превосходящая по значимости остальные две. Теперь мы поговорим о практическом применении
Прежде всего, если вы посмотрите на примеры (рис. 13.1 и 13.3), то увидите, что в цикличности основных волновых моделей всегда проглядываются числа Фибоначчи. Так, один полный цикл состоит из восьми волн - пяти восходящих и трех нисходящих. Как мы помним, числа 3 и 5 входят в эту последовательность. Дальнейшее разбиение волн на более мелкие дает нам тридцать четыре и сто сорок четыре волны - снова числа Фибоначчи. Однако математическое обоснование теории волн, в основе которой, как уже неоднократно подчеркивалось, лежит числовая последовательность Фибоначчи, конечно, не сводится к простому подсчету волн. Между различными волнами возникают пропорциональные отношения, выраженные числовыми величинами. Наиболее часто встречаются следующие коэффициенты Фибоначчи:
1. Поскольку из трех импульсных волн растягивается только одна, две остальные равны по протяженности и времени завершения. Если растягивается пятая волна, волны 1 и 3 должны быть почти равны. При растяжении третьей волны более или менее равными окажутся волна 1 и 5.
2. Минимальным ориентиром вершины волны 3 будет точка, координаты которой получают, умножая длину волны 1 на 1,618 и прибавляя произведение к показателю основания волны 2, то есть к значению, соответствующему самой нижней ее точке.
3. Верхняя точка волны 5 может быть установлена путем умножения длины волны 1 на 3,236 (2 х 1,618). Полученное произведение следует прибавить к значению вершины или основания волны 1. Соответственно, мы получим максимальный или минимальный ориентир.
4. Когда волны 1 и 3 равны, а волна 5, как ожидается, растянется, то ценовой ориентир может быть получен следующим образом. Во-первых, следует измерить расстояние от нижней точки волны 1 до вершины волны 3, и умножить его на 1, 618. Полученное произведение, в свою очередь, прибавляют к значению самой нижней точки волны 4.
5. При коррекции (в случае нормальной зигзагообразной коррекции типа 5-3-5) волна с часто достигает длины волны а.
6. Возможную длину волны с можно также измерить, умножив 0, 618 на длину волны а, и вычтя полученное произведение из значения основания волны а.
7. В случае плоской коррекции по типу 3-3-5, где волна b достигает или даже перекрывает уровень вершины волны а, волна с будет примерно равна 1,618 длины волны а.
8. В симметричном треугольнике отношение каждой последующей волны к предыдущей примерно равно 0,618.
Процентное выражение длины коррекции на основе коэффициентов Фибоначчи
Хотя существуют и другие коэффициенты, те, что мы привели выше, используются чаще всего. Данные коэффициенты помогают определять ценовые ориентиры как для импульсных, так и для корректирующих волн. Однако ценовые ориентиры также можно устанавливать с помощью