Акустическая приёмная система имела направленность в вертикальной и горизонтальной плоскостях порядка 30 град.
Для пеленгования источника шумов в станции был использован максимальный метод пеленгования. Отсчёт пеленга производился в момент максимального отклонения индикатора, показывающего уровень принимаемого сигнала (или по величине отметки на экране электронно-лучевой трубки), что соответствовало прохождению оси диаграммы направленности акустической антенны через источник шума. Акустическая приёмная система вращалась в азимутальной плоскости со скоростью 4 об/мин.
Гидроакустическая станция АГ-19 прошла Государственные испытания и в 1958 г. была принята на вооружение.
Согласно Акту государственных испытаний, проведенных в глубоководных районах Чёрного моря, дальность обнаружения дизельной ПЛ проекта 613 с обесшумленными винтами, следовавшей под электродвигателями на перископной глубине и на глубине 40-50 м при волнении моря до 5 баллов (что весьма сомнительно!) составляла: при скорости 6 узлов (11,2 км/ч) – 30 каб (5,6 км); при увеличении скорости до 10 узлов (18,5 км/ч) до 60 каб (11,2 км).
Остальные характеристики также выглядели вполне пристойно: срединная точность пеленгования – 4 град.; время обзора акватории за одно висение вертолёта, включая время подъёма и опускания акустического приемника – 5-6 мин
Малосведущие люди данные, полученные на испытаниях принимают как нечто незыблемое, не учитывая целый комплекс факторов, определяющих дальность обнаружения ПЛ.
В реальных условиях дальность обнаружения лодки гидроакустическими средствами зависит от её скорости, глубины погружения, гидрологических условий, шумов вертолёта, создающих дополнительные помехи, уровня подготовки оператора. Особый интерес представляют гидрологические условия, которые могут свести на «нет» все усилия экипажа.
Траектория звукового луча в водной среде не прямолинейна и зависит от скорости распространения звука в слоях воды, имеющих различную температуру и (в меньшей степени) солёность. Изменении температуры на 1 град, приводит к изменению скорости звука на 3,3 м/с и на 1, 2 м/с при из-
менении солёности на одну промилле т. е. на 1 г. соли в литре воды.
Особенно резко изменения температуры происходят в вертикальной плоскости. В этом случае звуковой луч, проходя через слои воды с различной температурой искривляется всегда в сторону слоёв воды более холодных и более плотных, в которых потери энергии меньше. Подобное явление именуется рефракцией звукового луча и в зависимости от знака температурного градиента (величина изменения температуры в градусах) может быть или положительной или отрицательной.
При положительной рефракции температура воды с глубиной повышается, скорость распространения звука увеличивается, а звуковые лучи отклоняются к поверхности моря. Величина заглубления акустического приёмника на дальность обнаружения ПЛ при таком виде рефракции существенно не влияет и она определяется в зависимости от других факторов.
При отрицательной рефракции температура воды с глубиной понижается, скорость распространения звука уменьшается, и звуковые лучи отклоняются ко дну.
Отрицательная рефракция наблюдается при весенне-летнем прогреве поверхности слоя, ниже которого сохраняются более низкие температуры. Это приводит к образованию сезонного слоя температурного скачка, достигающего своего максимума летом и разрушающегося в конце осени. При прохождении акустических волн через слой скачка происходит ослабление их интенсивности из-за расширения фронта акустической волны и рассеяние вследствие влияния пузырьков газа, планктона и прочих неоднородностей. Когда акустический приемник находится выше слоя температурного скачка, а ПЛ под ним, то дальность обнаружения её может уменьшаться в несколько раз в сравнении с обнаружением в случае изотермии. В подобных условиях представляется целесообразным опускать акустический приемник под слой скачка.
Из приведенного следует, что для получения оптимальных дальностей обнаружения подводной лодки экипаж, имея данные о гидрологических условиях, должен выбирать величину заглубления приёмного устройства гидроакустической станции.
Конструктивно станция состояла из нескольких блоков: опускного устройства (Прибор 1), пульта управления станцией (Прибор 4), компасного устройства (Прибор 26), усилителя (Прибор 8) и выпрямителя (Прибор 20).